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Article Info Abstract
Article History The engineering design process (EDP) is an innovative problem-solving approach
Received: used to develop effective solutions and products. While numerous studies have
20 September 2024 explored its implementation and potential effects, its impact on cognitive learning
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outcomes remains unclear. Thus, this current study aimed to evaluate the
17 January 2025
effectiveness of EDP. Meta-analytic findings from 17 studies with 29 valid
datasets published from 2015 to 2024 revealed an upper-medium effect on
cognitive learning performance (g = 0.70, p < .001). Additionally, geographic
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region, group selection, grade level, EDP model, and EDP skills had moderating

Cognitive learning outcomes L . .
Effecti effects. Furthermore, subgroup analysis indicated that EDP implementation was
ectiveness

Engineering design process more effective under the following conditions: (1) increased exposure to EDP, (2)
Meta-analysis smaller and (3) randomized class sizes (1-30 and 31-50 students), (4) Asian (5)
high school students, and (6) the use of EDP models such as DDCTPE (Define the
Problem, Decide Possible Solutions, Create the Design, Test, Present, Evaluate)
and AIPCTI (Ask, Imagine, Plan, Create, Test, Improve). Overall, the engineering
design process significantly enhanced core engineering knowledge and practice,

as well as students' cognition and thinking.

Introduction

The engineering design process (EDP) is an approach utilized in problem-solving. In this pedagogy, learners
acquire engineering-related practices and skills. According to TeachEngineering (2023) from the University of
Colorado, EDP has a series of steps that guide students in solving problems. Additionally, teamwork and design
are the key components of the strategy. The steps of the EDP involve defining the problem, conducting research,
generating ideas, selecting the optimal solution, developing and testing prototypes, refining the design, and
effectively communicating the results (Hafiz & Ayop, 2019). Similarly, Tipmontiane and Williams (2021)
highlighted that the steps of the engineering design process are iterative and creative learning processes that
integrate interdisciplinary concepts from science, mathematics, and technology. Incorporating the engineering
design process (EDP) into the curriculum benefits students. Capobianco et al. (2014) reported that engineering
design-based science in elementary schools promotes student participation, sustains learners' interest, and
enhances their self-concept in engineering and science. Meanwhile, Goktepe Yildiz and Ozdemir (2018) reported
that EDP activities positively enhance students' spatial abilities. Additionally, Bunprom et al. (2019) observed the

development of engineering design process skills among students.
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Sudrajat et al. (2023) examine the impact of the engineering design process on high school students' creativity.
Their findings reveal that EDP improves students' creative thinking. Additionally, they identify a significant
difference between students' creative thinking skills and their creativity in product development. Radloff et al.
(2019) report an increase in understanding of students utilizing engineering design in undergraduate biology in
which students design models of the composting process. On the other hand, LaKose (2015) argues that although
the use of the engineering design process (EDP) is beneficial, it still requires refinement and remains in its early
stages. The author also presents EDP-oriented learning activities aligned with the Next Generation Science
Standards (NGSS) in the United States.

Moreover, Selcen Guzey et al. (2016) describe the impact of design-based STEM curriculum integration on
students' achievement in engineering, mathematics, and science. The authors argue that the engineering design
process (EDP) and its practices are relatively new to many teachers, making implementation challenging. Their
study documents that EDP integration has varying effects across race and gender, which can either reduce or
exacerbate achievement gaps in engineering among student subgroups, depending on the outcomes. Additionally,
teacher-related factors, such as the quality of engineering-focused science units and the effectiveness of
engineering instruction, significantly predict student achievement in engineering. These results require
strengthening the professional development of teachers to enhance the implementation of EDP in different
contexts. Overall, the previous studies and literature on the engineering design processes suggest this educational
approach is particularly beneficial for STEM students and improves learning outcomes.

On the other hand, the systematic literature review of Winarno et al. (2020) on empirical research on the
engineering design process (EDP) in science education from 2010 to 2020 reports that projects are commonly
used to implement the EDP, varying according to the content being discussed. Authors highlight that the EDP
enhances cognitive skills, develops procedural skills, and fosters positive attitudes. Additionally, they emphasize
that the EDP is an emerging trend in science education, highlighting the need for further research to provide
essential data for policy decisions involving teachers, students, and other stakeholders. This study focuses on
summarizing the effects of the engineering design process (EDP) through a meta-analysis approach, aiming to
provide insights into its impacts and inform policy development related to the approach. Lastly, the research offers

empirical data on the significance of EDP implementation in the classroom.

Meta-analysis studies show that design thinking (DT), a broader approach than EDP, positively impacts student
performance and educational outcomes (Yoon, 2023; Yu et al., 2024). Yu and colleagues report that out of 25
articles, DT has a positive effect on student learning (r = 0.436, p < 0.001). They also identify several moderating
factors such as learning outcome, treatment duration, grade level, DT model, and region. DT instruction is more
effective when: (1) class size is <30, (2) applied to multidisciplinary contexts, and (3) duration is >3 months.
Meanwhile, Yoon utilizes 21 studies and reports an overall effect size of 0.469 for design thinking (DT),
interpreting this as a moderate effect size. The results confirm that DT interventions are effective for better
educational outcomes. Notably, the researcher finds that DT interventions have the largest effect on academic
achievement. Overall, these results emphasize the ongoing deficiency of meta-analysis studies on the effects of

the engineering design process (EDP) on the cognitive ability of students, indicating a gap in research that could
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provide valuable insights for educational policies and improving educational practices, including better learning

outcomes.

Interestingly, the work-in-progress meta-analysis by Fidai et al. (2020) on the engineering design process (EDP)
in science and mathematics provides initial empirical data on its effects. The researchers find that articles
published during and after 2018 reveal a significant Cohen's d effect size of 0.31 (CI = 0.18, 0.44) on students’
science and mathematics achievement. The findings suggest that implementing the EDP enhances students’
learning experiences and improves their academic achievement in science and mathematics. Despite these results,
the study has limitations, such as the inclusion of only six (6) studies and 18 data sets and its focus on publications
from 2018 to 2019. Since this study is considered a work in progress, it is important to note that future research
may revise the paper to include new publications related to EDP. Similarly, the study of Panergayo and Prudente
(2024) also reports a large effect size (g = 1.530) on enhancing scientific creativity using the engineering design
process model in STEM education from six articles published between 2015 and 2023. Moreover, the authors
considered this as the maximum effect size compared to STEAM design (0.696) and design thinking (0.869). In
contrast, the current inquiry utilizes peer-reviewed studies from 2015 to 2024, where EDP is used to enhance the
cognitive ability or performance of the students. Further, this research attempts to cover EDP in various
disciplines, not just STEM and determines the between-group effects using different moderators. Notably, studies
on the impacts of the engineering design process (EDP) on student cognitive performance, in general, remain
unanswered, and this drives the current investigation to evaluate the various empirical research on the

effectiveness of EDP.

Research Questions

Generally, this investigation aims to determine the effects of the engineering design process (EDP) on student
cognitive performance. Specifically, this meta-analysis sought to answer the following questions:
1. What are the characteristics of the studies included in the meta-analysis?
2.  What is the effectiveness of the engineering design process (EDP) in enhancing cognitive learning
performance?
3.  Was there a significant difference in the effect sizes according to the moderators such as location,

duration, class size, group selection, grade level, EDP model, and engineering design process skills?

Methodology

This investigation employed a meta-analysis method to determine the effects of the engineering design process
on students' cognitive performance. According to Riffenburgh (2012), a meta-analysis is a systematic method of
combining multiple studies to generate results with a larger sample size. Likewise, a meta-analysis yields overall
statistics, including the confidence interval, that summarize the effectiveness of the experimental intervention
compared to a comparator intervention. The advantages of this method include improving precision, answering
questions not addressed in individual studies, resolving controversies from seemingly conflicting results, and

generating new hypotheses (Higgins & Thomas, 2019).
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The meta-analysis procedure in this investigation generally follows the eight-step practical guide outlined by
Hansen et al. (2021). These steps include: (1) defining the research questions; (2) conducting the literature search,
including developing a search strategy, establishing inclusion criteria, and acquiring the sample; (3) selecting the
effect size measure, which involves determining the appropriate type of effect size and converting effect sizes to
a common metric; (4) choosing the analytical method, such as univariate meta-analysis, meta-regression analysis,
meta-analytic structural equation modeling, or qualitative meta-analysis; (5) selecting the appropriate software;
(6) coding effect sizes using a coding sheet, including moderator or control variables; (7) assessing outliers and
publication bias, including choosing between fixed-effects and random-effects models; and (8) reporting the

results in the article.

Search Strategy

The studies included in this meta-analysis were collected between January 5 to 27, 2025, from reputable databases
and indexing sites such as DOAJ, ERIC, ACI, Dimensions, Lens, Google Scholar, and ScienceDirect.
ResearchGate and Semantic Scholar were also used to identify relevant publications. These databases and
resources contain high-quality scientific publications in various international journals. Utilizing multiple
databases and search engines ensured a comprehensive search for articles to include in the analysis. This procedure
is similar to the process of Yu et al. (2024) by employing different sources to reduce the literature search bias.
The systematic search used the keywords “engineering design™ and “engineering design process.” All included

documents were peer-reviewed to ensure the quality of the meta-analysis.

Publication Selection

The study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines. The systematic search flow for identifying studies related to the engineering design process is
illustrated in Figure 1. Moreover, to guide the process of selecting the articles the following criteria are followed:
a. The study must report on the implementation of the engineering design process and its impact on
cognitive learning variables;
b. The investigation utilized an experimental or quasi-experimental research design; where the
experimental group received the EDP intervention;
c. The article must provide necessary and sufficient quantitative data for the calculation of the effect size;

d. Peer-reviewed and published in the English language.

Initially, 2,773 journal articles were identified from all databases and 52 reports from other sources. After
excluding duplicate articles and removing others based on title and abstract screening, the number was reduced to
2,208 articles. Further filtering led to the exclusion of articles not focused on education, resulting in 419 articles
for retrieval. Additionally, through other identification methods, three articles were not recovered, leaving 49
articles for appraisal. From the databases, 43 articles could not be retrieved, and only 376 were assessed for final

inclusion. After excluding articles unrelated to the engineering design process, lacking variables for cognitive
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learning, without control groups, or with insufficient data for effect size calculation, only 17 studies were included

in the meta-analysis.

Identification of studies via and regi s Identification of studies via other methods

)

Identification

Screening

Records identified from:
DOAJ (n = 424)
ERIC (n = 764)
ACI (n=27)
Dimensions (n = 897)
Lens (n = 354)
Google Scholar (n = 146)
SciDirect (n = 161)

Records removed before
screening:
Duplicate records removed
(n = 457)
Records removed for other
reasons (n = 108)

Records identified from:
Websites (n = 25)
Citation searching (n = 27)

}

Records screened

Records excluded
Filtered: not on education
(n =1789)

(n = 2208)

Reports sought for retrieval

(n = 419)
!

Reports not retrieved
(n=43)

Reports sought for retrieval

Reports not retrieved
(n=3)

(n=52)
!

Reports assessed for eligibility
(n = 376)

Reports excluded:
Not related to EDP (n = 156)
No variable on cognitive
learning (n = 186)
No control groups (n = 17)
Insufficient statistical data
(n=3)

Reports assessed for eligibility
(n=49)

Reports excluded:
Not related to EDP (n =0)
No variable on cognitive
learning (n = 8)
No control groups (n = 17)
Insufficient statistical data
(n=21)

y

Reports of included studies
(n=17)

Included

Figure 1. PRISMA Flow Diagram Search of EDP from Databases, Registers, and Other Sources

Risk of Bias Assessment and Quality of the Studies

According to De Cassai et al. (2023), assessing the risk of bias is mandatory when conducting a meta-analysis, as
it provides an overview of the quality of the studies from which data are extracted. In this meta-analysis, the
quality and risk of bias assessment of the 17 identified articles were evaluated using the domains from the JBI
Critical Appraisal Tool for Quasi-Experimental Studies 2023. The checklist includes the following risk of bias
domains: (1) bias related to temporal precedence, (2) selection, and allocation, (3) confounding factors, (4)
administration of intervention/exposure, (5) assessment, detection, and measurement of outcomes, including the
(6) bias related to participant retention (Barker et al., 2024). Additionally, statistical validity was also examined.
Moreover, to visualize the risk-of-bias assessment figures, the robvis tool by McGuinness and Higgins (2020) was

employed using the generic template for datasets.

Figures 2 and 3 present the risk of bias assessment results based on the author's appraisal. It is noted that all studies
exhibit a low risk of bias related to temporal precedence, indicating that the articles clearly identified which
variable was manipulated as the potential cause. Next is the bias related to selection and allocation, which assesses
whether control groups were present. Moreover, the bias related to the administration of intervention or exposure
is considered to be a low risk of bias. This domain is necessary to check because to attribute the observed effect
to the cause, it is assumed that participant characteristics are balanced between groups, and there should be no
other differences in the treatments or care received, aside from the manipulated variable. Moreover, a low risk of

bias is documented related to the assessment, detection, and measurement of outcomes. This domain evaluates
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the use of reliable measurement tools or scales, the process of assessment, the adequacy of statistical power, and
potential violations of assumptions in statistical tests. Further, a low risk of bias is also reported on bias related to
participant retention. This domain assesses participant retention by checking whether follow-up was conducted.
If some students drop out or stop participating in the study, it is important to report the number of students lost to
follow-up, the reasons for their withdrawal, and whether this affected the study’s outcomes. Conversely, the author
reports that nine (9) studies lack information regarding bias related to confounding factors. This domain assesses
the baseline data or characteristics of participants in each comparison group. Notably, internal validity may be
compromised if there are significant differences in participant characteristics between the groups being compared.
Overall, the appraisal of the included studies yielded a low risk of bias, this ensures the reliability of the effect

size computation in the meta-analysis and could be used to inform policy decisions.

Risk of bias

D1: Bias related to temporal precedence Judgement

D2: Bias related to selection and allocation

D3: Bias related to confounding factors . Low

D4: Bias related to administration of intervention/exposure . No information

D5: Bias related to assessment, detection and measurement of the outcome
D6: Bias related to participant retention

Figure 2. Risk of Bias Assessment Results of the Individual Studies

Bias related to temporal precedence

Bias related to selection and allocation

Bias related to confounding factors

Bias related to administration of intervention/exposure

Bias related to assessment, detection and measurement of the outcome
Bias related to participant retention

Overall

09 25% 50% 75% 100%

o
&

| I neinormaion [l cetical Il Hion [ some Concerns [l Low |

Figure 3. Overall Risk of Bias Assessment of the Studies included in the Meta-analysis
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Data Extraction and Coding the Potential Moderators

The researcher used a meta-analysis matrix to extract data from the 17 articles, including the characteristics of
each study such as document type, journal source, country, EDP implementation, journal ranking such as Scimago
Journal & Country Rank (SJR) or Science and Technology Index (Sinta), citations, cognitive variables, and the
statistical data for effect size computation. Additionally, potential moderators or factors that may influence the
effects of the engineering design process (EDP) were also extracted.

1. Geographic Region - this moderator refers to the study's location, categorized as East Asia, West Asia,
Southeast Asia, and the Midwest USA.

2. Duration - this factor refers to the length of time of implementation of the engineering design process
and is categorized as <3 weeks, 4-6 weeks, 7-9 weeks, and >10 weeks.

3. Class Size - this moderator refers to the number of students in the class where the EDP is implemented,
categorized as 1-30, 31-50, 51-100, and >100.

4. Group Selection - this factor refers to the process by which researchers assign participants to either the
control or experimental group, categorized as randomized or nonrandomized.

5. Grade Level - this moderator refers to the educational stage of the participants, categorized as preschool
(aged 2-5), elementary (aged 5-10), middle school (aged 11-13), high school (aged 14-18), and university
level.

6. EDP Model - refers to the specific stages of various engineering design process models. Four models
were identified in the study: AIPCTI (Ask, Imagine, Plan, Create, Test, Improve), DDCTPE (Define the
Problem, Decide Possible Solutions, Create the Design, Test, Present, Evaluate), EDIPT (Empathize,
Define, Ideate, Prototype, Test), and CTC (Copy, Tinker, Create).

7. EDP Skills - refers to engineering design process skills. Since this meta-analysis study focuses on
cognitive performance, variables were coded into two broad categories based on the domain
classifications of EDP skills by Abdulwahed and Hasna (2016): Core Engineering Knowledge and

Practice, and the skills related to Cognition and Thinking.

Data Analysis

The study utilized the mean, standard deviation, and sample size, with the bias-corrected standardized mean
difference (Hedges’ g) as the effect size measure. Hedges’ g can be applied to both large and small samples,
eliminating the need to switch between Hedges’ g and Cohen’s d in the analysis that includes studies with varying
sample sizes (Chalmers & Altman, 1995, as cited in Turner & Bernard, 2006). Additionally, to address variations
in effect sizes across studies, conversions were performed using Wilson’s (2023) online effect size calculator, this
process is based on the meta-analysis guide of Hansen et al. (2021) using the standard books of Lipsey and Wilson
(2001) and Borenstein et al. (2009).

Furthermore, JASP 0.19.3 was used to determine the effects of the engineering design process. The statistical
software generates statistics, figures, and tables, including the pooled effect size displayed in the forest plot, as

well as the funnel plot and publication bias assessment. Meanwhile, subgroup analysis was performed in SPSS 30
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(172) to determine the difference in the mean effect size of factors (moderators) and the direction of difference
between subgroups (Cikrikci, 2016). Lastly, the effect size was interpreted using Sawilowsky's (2009) revised
rules of thumb: g = 0.01 (very small), g = 0.2 (small), g = 0.5 (medium), g = 0.8 (large), g = 1.2 (very large), and
g = 2.0 (huge).

Results and Discussion

This section presents the characteristics of the studies included in the meta-analysis and examines the effects of
the engineering design process on students' cognitive learning performance including the difference in the effect
size of the identified potential moderators.

Characteristics of the Studies included in the Meta-analysis

Table 1 presents the features of each study included in the analysis. A total of 17 documents were considered in
the meta-analysis, consisting mostly of original research articles, along with one thesis and one conference paper.
Publications on the engineering design process (EDP) originated from eight countries: China, Indonesia, Lebanon,
Malaysia, Taiwan, Thailand, Turkey, and the United States. Notably, these articles were published from year 2015
to 2024. Moreover, data from the Scimago Journal & Country Rank and Sinta Journal Rank indicate that most
studies were published in reputable journals and universities, and indexed in various databases. The studies by
Fan and Yu (2015) and Lin et al. (2021) received the highest number of citations, with 294 and 214 citations,
respectively. Furthermore, the EDP was implemented as an intervention in experimental groups across different
educational levels, from preschool to university. All studies examined the effects of EDP on cognitive learning
outcomes, including critical thinking ability (Safitri et al., 2024), computational thinking (Abdul Samad et al.,
2023), interdisciplinary knowledge (Cross Francis et al., 2019), and learning gains (Dankenbring & Capobianco,
2015).

Table 1. Characteristics of Studies included in Meta-analysis

Ranking o
Authors Type  Journal Country EDP Implemented ] Citations
(SJR/ Sinta)
o . STEM-based
Safitri et al. . Jurnal Penelitian . o . ]
Acrticle o Indonesia  Engineering Design Sinta 2 1
(2024) Pendidikan IPA
Process
Educational )
) EDP Conceive
Xietal. . Technology ] ]
Article China Design Implement Q1 1
(2024) Research and

Operate (CDIO)
Development

STEM-PBL Integrated
Abdurrahman ) ) ) o ]
Article Heliyon Indonesia  Engineering Design Q1 45
et al. (2023)

Process
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Ranking L
Authors Type  Journal Country EDP Implemented ] Citations
(SJR/ Sinta)
Journal of o
Uzun and Sen ) ) STEM-based activities
Article Pedagogical Turkey o ) Q2 13
(2023) Engineering/ Design
Research

International )
CThink4CS2 Module

Abdul Samad ) Journal of ) ) o
Article ) Malaysia  with Engineering Q3 1
et al. (2023) Educational ]
Design Process (EDP)
Methodology
International New-product creativity
Sopakitiboon . Journal of . (NPC) through the
Article ) ] Thailand ) ) ) Q2 2
etal. (2023) Engineering engineering design
Pedagogy process (EDP)
_ Confere Innovative . Engineering design
Chou and Shih . Taiwan o
nce Technologies and thinking in robot - 3
(2022) . .
Paper  Learning projects
] Scientiae Educatia: Arduino-based
Maryati et al. . o . o . ]
(2022) Article Jurnal Pendidikan Indonesia  engineering design Sinta 3 4
Sains process (EDP)
) International )
Linetal. ) ) EDP & STEM project-
Article Journal of STEM  Taiwan ) Q1 214
(2021) ) based learning
Education

Inquiry-based science

Linetal. . Early Education ] o
Article China and engineering Q1 72
(2020) and Development
(IBSE) program
) ) ) Pre-engineering
Cross Francis ) School Science United
Acrticle ) program: A Workplace Q2 6
et al. (2019) and Mathematics  States ) ) )
Simulation Project
] o Integration of the
Syukri et al. ) Jurnal Pendidikan ) o ) Q3/
Article ] Indonesia  engineering design ] 79
(2018) IPA Indonesia Sinta 1

process in the module

Eurasia Journal of o
. EDP 3D Printing
Mathematics,

Linetal. ) ) ) Technology in STEM/
Article  Science and Taiwan ) Q2 57
(2018) Project-Based
Technology ) o
) Learning Activities
Education
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Ranking o
Authors Type  Journal Country EDP Implemented ] Citations
(SJR/ Sinta)
American Science and
Alameh ] o ] . ]
(2018) Thesis  University of Lebanon Engineering Practices - 5
Beirut in Biology
Dankenbring International
and ) Journal of Science United EDP-based science
. Article ] Q1 57
Capobianco and Mathematics  States task
(2015) Education
International .
Technological/
Fan and Yu ) Journal of ) ) ) )
Acrticle Taiwan engineering design- Q1 294
(2015) Technology and
) ) based module
Design Education
International )
) Toy Crane Design-
Korur et al. . Journal of Science ]
Article ) Turkey Based Learning on Q1 28
(2015) and Mathematics

) Simple Machines
Education

Effectiveness of the Engineering Design Process (EDP) in Enhancing Cognitive Learning Performance

A total of 17 studies with 29 valid study datasets were included in the meta-analysis. According to Borenstein et
al. (2009), when a researcher aims to combine data from different studies conducted independently by other
scholars, all investigations are unlikely to be identical or functionally equivalent. Differences in respondents and
interventions may influence the results, making it inappropriate to assume a common effect size. Therefore, the
random effects model is more justified than the fixed effects model in such cases. Using this premise, this meta-
analysis utilized a random effects model to determine the effects of the engineering design process on students'
cognitive learning performance. Table 2 presents the meta-analytic results examining the effectiveness of the
EDP. A pooled effect size (Hedges' g) of 0.70 was calculated from 29 independent datasets (k = 29), indicating
an upper-medium positive effect of the engineering design process on cognitive learning outcomes, as represented
by the diamond in the forest plot in Figure 4. Likewise, this effect was statistically significant (Z = 6.774, p <
.001), with a 95% confidence interval (CI) ranging from 0.499 to 0.905. Notably, this result is consistent with the
work-in-progress meta-analysis performed by Fidai et al. (2020), which found that the engineering design process
affected students' science and mathematics achievement, with a Cohen's d value of 0.31, indicating a small effect
size based on six studies with 18 datasets. Similarly, Panergayo and Prudente (2024) reported the effects of the
engineering design process from six studies, with a Hedges' g value of 1.530, indicating a large effect size on
scientific creative thinking. Overall, the results of the current meta-analysis corroborate previous findings,
confirming that the engineering design process (EDP) has positive effects on learning outcomes, particularly in

cognitive learning performance.
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Table 2. The Pooled Effect Size of the Engineering Design Process and the Residual Heterogeneity Statistics

k Hedges’g SE z p 95% CI (Lower) 95% CI (Upper)
| ] | ] | ] 1 1
29 0.70 0.104 6.774 <.001 0.499 0.905
| ] | ] | ] 1 1
T 7 12 H? df Q p
| | | | | | | 1
0.473 0.224 79.838% 4.960 28 94.765 <.001
'
Author/s (Year) : :
Safitri et al. (2024)a ll : —_—
Safitri et al. (2024)b ' : —_— .
Xiet al. (2024) ! — 24, 1
Abdurrahman et al. (2023) —— .29 [-0.18, 0.7¢
Uzun and $en (2023) —_—— .41 [-0.30, 1.12
Abdul Samad et al. (2023) ' —— 1.1 .66, 1.64
Sopakitiboon et al. (2023) : - . .41, 1.4
Chou and Shih (2022)a —
Chou and Shih (2022)b —_— :
Chou and Shih (2022)c H : =
Maryati et al. (2022) :—.— .48 .01, 0.95]
Lin et al. (2021)a - - .89 [-0.07, 1.
Lin et al. (2021)b ! g
Lin et al. (2021)c e . .02, 1.
Lin et al. (2021)d : . .92 [-0.08, 1.92)]
Lin et al. (2020)a . —.— . .29, 1.
Lin et al. (2020)b I . —a— .48 .01, 1.95]
Lin et al. (2020)c H — . A7, 1
Cross Francis et al. (2019)a —:—.— 0.40 [-0.07,
Cross Francis et al. (2019)b —_— . .12 [-0.49, 0.73
Syukri et al. (2018) y —— N3 0.18, 1.04
Lin et al. (2018) — . .21 [-0.42, 0.84
Alameh (2018)a — 0. -0.44, 0.54
Alameh (2018)b —:—.— . .27, 0.71]
Dankenbring and Capobianco (2015) ——— . -0.26, 0,68
Fan and Yu (2015)a ; —— L.
Fan and Yu (2015)b ! = = 1.
Fan and Yu (2015)c ' ——
Korur et al. (2015) L — R 1
' :
Model Information H :
Heterogeneity: Q(28) = 94.77, p < 0.001 ! :
Pooled Estimate ! e .91
" : 1.
2 1 0 1 2 3

Effect Size (g)

Figure 4. Forest Plot of the Effects of the EDP on Cognitive Learning Performance

Additionally, the forest plot reveals variability among the individual studies. Some variables related to cognitive
learning outcomes show statistically significant positive effects, as indicated by confidence intervals (Cls) that do
not cross the line of no effect (zero), while others do cross this line. Specifically, out of 29 valid datasets, 16
demonstrated that the engineering design process had a significant effect on students’ cognitive learning
outcomes. Furthermore, to determine the extent of variability in effect sizes across the included studies, the Q-
statistic provides a test of the null hypothesis that all studies in the meta-analysis share a common effect size. If
this were true, the expected Q-value would be equal to the degrees of freedom (the number of studies minus one).
In this investigation, the Q-value is 94.765 with 28 degrees of freedom and p < .001, leading to the rejection of
the null hypothesis, indicating that the true effect sizes differ across studies. Additionally, the 12 statistic is
79.838%, suggesting that 79.838% of the variance in observed effects is due to true effect size differences rather
than sampling error. Further, the variance of true effects (1%) is 0.224, and the standard deviation of true effects
(t) is 0.473. The forest plot also provides the prediction interval (PI) ranges from -0.25 to 1.65 denoted by the
thick and black line below the diamond, indicating that in some 95% of populations comparable to the analysis,
the true effect size will fall within this range. This suggests that while the engineering design process (EDP) may

have a substantial impact on some populations, there will be others where its effect is minimal or even absent.
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Furthermore, the tests above show heterogeneity but do not indicate which study influenced it, and to ensure the
robustness of the meta-analytical findings sensitivity analysis was performed. Firstly, to identify potential outliers,
casewise diagnostics and the Baujat plot were used to detect studies that excessively contribute to heterogeneity
and overall results (Baujat et al., 2002). In Figure 5, each dot represents an individual study, with studies located
in the top right quadrant exerting a stronger influence on the overall results and contributing to the most

heterogeneity in the analysis. Notably, based on the analysis no influential case or dataset was found.

The study also employed the one-study-removal method to assess the robustness of the current investigation,
ensuring that the results are not dependent on any single study. The findings demonstrate that the overall effect
size remained within a reasonable range (0.664 - 0.740), supporting the robustness of the meta-analysis. This
range also indicates that the effect size consistently fell between moderate (0.5) and large (0.8) thresholds.
Meanwhile, the study weights (%) were also provided in the last column of data in the forest plot signifying that
each dataset has contributed to the pooled effect size. Specifically, studies with narrower confidence intervals
(less uncertainty around their effect estimate) have more weight. This is essential in ensuring that the meta-analysis
gives a more accurate and representative estimate of the true effect by giving more emphasis to the most reliable
studies.
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Figure 5. Identification of Datasets Contributing to Heterogeneity using the Baujat Plot

Another analysis was conducted to assess the potential for publication bias. According to Rothstein et al. (2006),
publication bias refers to the tendency for studies with significant results to be published more often than those
with insignificant or inconclusive findings, making published studies unrepresentative of all conducted research.
Publication bias can be examined in several ways, first is by checking the funnel plot, which illustrates the
distribution of effect sizes. Figure 6 (A) suggests potential asymmetry in the plot, which may indicate publication
bias. However, Simmonds (2015) argues that relying solely on the visual inspection of a funnel plot can lead to a
misleading conclusion about the presence or absence of publication bias. Thus, formal statistical tests for bias are

generally preferred to test the asymmetry of the plot (Table 3).

Following the dotted lines in Figure 6, the funnel prediction interval is aligned with confidence levels of 0.90,

0.95, and 0.99. Meanwhile, Figure 6 (B) displays the power-enhanced funnel plot, a novel graphical display
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according to Kossmeier et al. (2020), used to assess the study-level power in meta-analysis. Additionally, the plot
highlights the statistical power of studies to detect the true underlying effect of the engineering design process,
offering a more detailed view compared to the traditional funnel plot. It includes color-coded power regions and
a second power axis used for further analysis. It can be noted that the top funnel (green area) are the studies with
small standard errors and have high power, these studies are more precise estimates of the effect size. Conversely,
the bottom funnel (red area) is the study with large standard errors that have low power. These are typically smaller
studies with less precise estimates of the effect size. Notably, based on the plot most of the studies are in a
considerably high-power region suggesting that this meta-analysis, as a whole, likely has reasonable power to
detect an overall effect. However, the presence of some studies in the red (low power) region highlights the
potential influence of small, underpowered studies. Therefore, these studies, due to their imprecision can

contribute to heterogeneity.
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Figure 6. Conventional Funnel Plot (A) and Power-enhanced Funnel Plot (B)

Table 3 presents the results of several statistical tests for funnel plot asymmetry, which are used to assess potential

publication bias in meta-analysis.

Table 3. Statistical Tests for Funnel Plot Asymmetry

Funnel Plot Asymmetry Test  Statistic value p 95% CI (Lower) 95% CI (Upper)
Fail-Safe N 2384.000 <.001

Rank Correlation Test 7 0.038 0.777

Meta-Regression Test z 1.468 0.640 0.009 1.141
Weighted Regression Test t -0.575 0.570 0.433 1.239
Trim-and-Fill Analysis 0.000
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The Classic Fail-Safe N test determines the number of studies with null results needed to overturn the observed
effect (Rosenthal, 1979). The large Fail-Safe N value of 2384 indicates that the overall effect is robust against
potential publication bias. Further, this data suggests that the current meta-analysis would need 2384 studies with
an effect size of zero to nullify the observed effect. Additionally, the p-value of < .001 further implies that the
investigation is not susceptible to publication bias. Despite these results, Borenstein (2019) argued that using Fail-
Safe N should be avoided due to some limitations. Moreover, this method was originally designed to ensure that
results were not solely due to publication bias. However, it was developed during a time when meta-analysis
primarily aimed to test a specific null hypothesis. Additionally, in the modern context, where the focus is on
estimating the mean effect size and testing a different null hypothesis, Fail-Safe N holds little relevance. Thus,

other analyses can be employed to provide more insights into the data.

Additionally, the Rank Correlation Test (Kendall's tau) examines the correlation between effect sizes and their
standard errors. The non-significant tau value of 0.038 (p = 0.777) indicates no significant association, suggesting
a lack of publication bias. Similarly, the meta-regression test or Egger’s test, which assesses the relationship
between intervention effect size estimates on their standard errors weighted by the inverse variance, shows a non-
significant z-value of 1.468 (p = 0.640), reinforcing that no significant asymmetry was detected. The weighted
regression test also yields a non-significant result (t =-0.575, p = 0.570). The above statistical investigations from
the funnel plot asymmetry test, supported by a p-value greater than 0.05, suggest that the effect size distribution
is likely symmetrical. Furthermore, the Trim-and-Fill Analysis, a method that imputes potentially missing studies
to correct for funnel plot asymmetry was employed, in this investigation the side where the studies to be imputed
was set to the right side, and found only two (2) additional studies to be imputed (see Figure 7).
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Figure 7. Funnel Plot showing the Imputed Studies in the Trim-and-Fill Analysis

Moreover, the Trim-and-Fill analysis adjusted the effect size estimate, shifting Hedges’ g from the observed value
g = 0.70, p <.001, CI [0.449, 0.905], represented by the red dashed line, to an adjusted estimate g = 0.77, p <
.001, CI [0.566, 0.981], indicated by the solid black vertical line. Noteworthy, according to Mavridis and Salanti
(2014), this method served as sensitivity analysis and this current investigation found that the effect sizes are still

in considerable range. In summary, all of the above statistics suggest a low risk of publication bias in the current
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meta-analysis, corroborating the findings from the appraisal assessments for each study in different risks of bias

domains provided in the methodology.

Subgroup Analysis of the Effects of the Engineering Design Process across Different Moderators

Despite the empirical evidence for the overall effectiveness of the engineering design process, the considerable
heterogeneity in this meta-analysis highlights the importance of reviewing contextual factors and exploring
potential moderators that may influence its effects. Additionally, Quintana (2015) described that moderating
variables contribute to some of the observed variance. To examine the influence of various moderators on effect
sizes and address observed heterogeneity, subgroup analyses were conducted. These inquiries examined how the
engineering design process (EDP) effect size varied across different population and intervention characteristics,
including geographic region, study duration, class size, group selection method, grade level, EDP model
employed, and EDP skills. Moderator analysis involves partitioning the pooled data into distinct subgroups to

facilitate comparisons and identify potential moderators of the overall effect (Higgins & Thomas, 2019).

Table 4 summarizes the results of the subgroup analysis of potential moderating variables identified in the study.
The results revealed statistically significant variations in effect sizes across different regions (Q = 12.052, df = 3,
p = 0.007). Significant large effect sizes were demonstrated for East Asia (g = 0.792, p < 0.001) and Southeast
Asia (g =0.950, p<0.001). Meanwhile, West Asia showed a smaller, but statistically significant effect (g = 0.312,
p = 0.023). In contrast, the Midwest USA presented a non-significant effect size (g = 0.262, p = 0.078). This may
be due to differences in cultural and educational systems across regions, as well as other factors such as learning
styles and student engagement. Giindiiz and Ozcan (2010) also argued that each student learns differently, which
is why teachers must explore various teaching styles. Furthermore, it can be noted that studies conducted in the
Midwest USA region had a low sample size (k = 3), indicating an uneven distribution of studies in the subgroup,
which may result in low statistical power. Hence, the interpretation of these results should be treated with caution.
Despite this, Asian students showed considerable improvement in cognitive learning outcomes after the

implementation of the engineering design process.

On the other hand, subgroup analysis showed no significant differences in the duration (Q = 2.067, df =3, p =
0.559). Studies lasting <3 weeks had a large effect size (g = 0.913, p = 0.017), 4-6 weeks had a medium effect
size (g = 0.533, p < 0.001), and >10 weeks had an upper medium effect size (g = 0.735, p = 0.017). Conversely,
studies with a 7-9 week implementation period showed a medium effect size but not significant (g = 0.598, p =
0.228). These results indicate that the length of implementation of EDP has no moderating effects. Since the
engineering design process was the intervention used in the studies, it may have been the first time participants
encountered this approach. Thus, the shorter implementation period with a larger effect size, such as less than 3
weeks, may have resulted in a novelty effect. According to Schomaker and Meeter (2015), a novel stimulus
triggers a cascade of brain responses, activating various neuromodulatory systems. Consequently, novelty affected
cognition, including improving perception and action, increasing motivation, eliciting exploratory behavior, and
promoting learning. Interestingly, the 4-6 weeks and >10 weeks results have provided a significant upper-medium

effect with (k=10) studies in each. It can also be inferred that the longer duration may result in better outcomes.
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Meanwhile, the insignificant effect observed in the 7-9 weeks category with a medium effect size may be due to
the less power of the studies and uneven distribution of datasets in the subgroup analysis. Therefore, due to these

limitations, interpretations may not be conclusive.

Table 4. Subgroup Analysis according to the Identified Moderators

Effect Size Estimates for Subgroup Analysis Subgroup Homogeneity
Moderators

k g Lower  Upper z p Q df p

IGeographic Region I 12.052 ' 3 ' 0.007*

East Asia 15 0.792 0.521 1.063 5718 <.001
South East Asia 7 0.950 0.456 1.445 3.766  <.001
West Asia 4 0.312 0.044 0.580 2281  0.023
Midwest USA 3 0.262 -0.029 0.554 1762 0.078
"Duration S ' ' ' ' 2067 3 0559
<3 weeks 5 0.913 0.166 1.661 2395  0.017
4-6 weeks 10 0.533 0.320 0.746 4907 <.001
7-9 weeks 4 0.598 -0.375 1.571 1.205 0.228
>10 weeks 10 0.735 0.166 1.661 2395  0.017
"Class Size S ' ' ' ' 3168 3 0366
1-30 10 0.591 0.194 0.989 2918  0.004
31-50 13 0.648 0.316 0.981 3.820 <.001
51-100 3 0.983 0.499 1.466 3.986 <.001
>100 3 0.872 0.719 1.025 11.156 <.001
IGroup Selection I I I I I I I 5.929 I 1 I0.015*I
Randomized 16 0917 0.683 1.150 7.699 <.001
Nonrandomized 13  0.453 0.194 0.163 0.744  0.002
Grade Level 10.371 4 0.035*
preschool 3 0.983  0.499 1466  3.986 <.001
elementary 4 0.346  -0.563 1.255 0.746  0.456
middle school 4 0.312 -0.199 0.860 2281  0.023
high school 13  0.790 0.484 1.097 5.057 <.001
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Effect Size Estimates for Subgroup Analysis Subgroup Homogeneity

Moderators r ; 1
k g Lower  Upper z p Q df p

university level 5 0884 0477 1292 4251 <.001
EDP Model 10.847 3 0.013*
AIPCTI 7 0811 0.522 1.099 5509 <.001
DDCTPE 17 0775 0.534 1.015 6.319 <.001
EDIPT 2 0135 -0211 0481 0.764  0.455
CTC 3 0401 -0877 1680 0.615 0.538
EDP Skills 11.149 1 <.001*
Core Engineering
Knowledge and 17 0451 0.272 0.631 4.933 <.001

Practice

Cognition and Thinking 12  1.047  0.747 1349 6.833 <.001

Random-effects model: *Moderating effect, p<.05

Furthermore, the non-significant Q value for subgroup homogeneity (Q = 3.168, df = 3, p = 0.366) indicates that
class size had no moderating effects. However, individual class size categories showed varying results. Smaller
classes (1-30 students) demonstrated a statistically significant upper-medium effect (g = 0.591, p = 0.004), as did
classes with 31-50 students (g = 0.648, p<.001). Meanwhile, classes with 51-100 students and over 100 students
yielded large effect sizes (g = 0.983, p < .001) and (g = 0.872, p < .001), respectively. Furthermore, all individual
class size categories showed statistically significant effects, the overall test for subgroup homogeneity suggests
that class size, when considered as a whole, does not have a moderating effect. Based on these findings, it appears
that large class sizes such as 51-100 and over 100 students exhibit the largest effect, suggesting that multiple
teachers may be required to manage such large groups during EDP implementation similar to studies of Fan and
Yu (2015) and Lin et al. (2020). Despite these results, the interpretations are not conclusive due to the uneven
distribution of studies in the subgroup. Specifically, the class size with a large effect size is only represented by
three studies (k=3). Interestingly, small class sizes such as 1-30 (k = 10) and 31-50 (k = 13) had a significant
upper-medium effect size in enhancing cognitive learning performance through the implementation of the

engineering design process and this is supported by most of the studies included in the meta-analysis.

On the other hand, the subgroup homogeneity test (Q = 5.929, df = 1, p = 0.015) indicates that the effect sizes
differ significantly between group selection methods (randomized vs. nonrandomized), suggesting that group
selection acts as a moderator. Randomized selection showed a larger, significant effect (g = 0.917, p < .001,)
compared to non-randomized selection (g = 0.453, p = 0.002). This analysis suggests that studies employing
random assignment of participants to treatment and control groups demonstrated a stronger effect of the

engineering design process on cognitive learning outcomes. While studies that did not use randomization found a
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less effect. According to Pierre (2001), randomly assigning units to treatment and control groups provides
researchers with the most robust basis for drawing causal inferences between the intervention and the observed
outcomes. Conversely, non-randomized studies are more susceptible to bias, which could either inflate or deflate
the observed effect size. Overall, this analysis provides substantial evidence that the selection of participants into

groups has a moderating effect.

A significant difference was also found across grade levels (Q = 10.371, df = 4, p = 0.035), this indicates that
grade level has a moderating effect. Large positive effects were observed in preschool (g = 0.983, p <.001), high
school (g = 0.790, p <.001), and university level (g = 0.884, p <.001). Meanwhile, a small, but still significant,
positive effect was observed in middle school (g = 0.312, p = 0.023). On the other hand, the elementary level did
not show a significant effect (g = 0.346, p = 0.456). Findings suggest that the effect of the engineering design
process varies across different educational stages, with greater potential in preschool and university levels
exhibiting the largest effects. These results also corroborate the distribution of studies that implemented
engineering design processes across different educational stages, as reported by Winarno et al. (2020). They also
emphasized the implementation gaps of the EDP at the undergraduate and graduate levels compared to other
educational stages. Due to the uneven distribution of studies in the subgroup analysis, the interpretations should
be treated judiciously. Despite these results, the engineering design process positively impacts cognitive learning
performance across educational levels, with large effects among high school students (g = 0.790, p < .001)
supported by 13 datasets.

Additionally, a significant difference was found across EDP models (Q = 10.847, df = 3, p = 0.013), indicating
the EDP model as a moderator and this variable could also cause heterogeneity. Large positive effects were
observed for AIPCTI (g = 0.811, p < .001) and DDCTPE (g = 0.775, p < .001). While, EDIPT (g = 0.135, p =
0.455) and CTC (g = 0.401, p = 0.538) did not show significant effects. These findings suggest that the chosen
EDP model influences the observed effect size, with AIPCTI and DDCTPE demonstrating stronger effects
compared to the other models. Furthermore, according to the Texas Education Agency (n.d.), the design process
is iterative, meaning some stages may need to be repeated before progressing. The design might require
modifications and improvements until it meets the specified criteria. Although there are predefined steps, the
process is not linear or sequential. Notably, it is important to note that while these EDP models have comparable
stages, there are differences and distinct features between them. Therefore, understanding the stages of the EDP
is essential for performing the problem-solving process effectively. Due to the uneven distribution and insufficient
number of studies in other EDP models, such as EDIPT (k=2) and CTC (k=3), the interpretations may not be
conclusive. However, this research suggests that the DDCTPE and AIPCTI models can be adopted for the

implementation of the engineering design process.

Furthermore, a significant difference was observed between skill categories (Q = 11.149, df = 1, p < .001),
suggesting that EDP skills had a moderating effect. Significant positive effects were found for both Core
Engineering Knowledge and Practice (g = 0.451, p < .001) and Cognition and Thinking (g = 1.047, p < .001).
These broad skills are derived from the four dimensions of engineering skills according to Abdulwahed and Hasna

(2016), two of which are Professional and Interpersonal and Business and Management. However, only the first
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two dimensions were considered in this context. Core Engineering Knowledge and Practice encompasses Math,
Physics, and Science Fundamentals (MPSF), Disciplinary Knowledge (Depth), Interdisciplinary Knowledge
(Breadth), Multidisciplinary Knowledge (MDK), Practical Skills (PrS), and Information and Computer
Technology Skills (ICTS). Meanwhile, Cognition and Thinking include Problem-Solving Skills (PSS), Lifelong
Learning (LLL), Decision-Making Skills (DMS), Systems Thinking Approach (STA), Critical Thinking (CIT),
Innovation Skills (InS), and System Design Skills (SDS). In this current meta-analysis, results show that the
implementation of the engineering design process (EDP) has more effects on the cognitive learning performances
related to Cognition and Thinking compared to Core Engineering Knowledge and Practice. This result is supported
by the argument of Yu et al. (2024), who stated that design thinking models consist of multiple stages, whereas
some models are difficult and challenging. Consequently, their impact on self-efficacy tends to be smaller
compared to other types of learning outcomes. Lastly, the current meta-analysis is corroborated by the impact of
the engineering design process on problem-solving (Maryati et al., 2022), system thinking (Abdurrahman et al.,
2023), and critical thinking ability (Safitri et al., 2024).

Conclusion

This meta-analysis investigated the effectiveness of the engineering design process (EDP) in improving students'
cognitive learning outcomes. The study utilized 17 studies with 29 valid datasets from different geographic
regions, implemented across various educational levels and subject areas. The documents included in this meta-
analysis were published between 2015 and 2024, all sourced from reputable journals and universities. Meanwhile,
out of the 17 studies, most are original research articles, one is a conference paper, and another is a final thesis
manuscript. Each investigation focused on distinct cognitive learning variables that were enhanced through the
implementation of the engineering design process (EDP). The current meta-analysis revealed that the
implementation of the engineering design process has a significant effect on cognitive learning outcomes (g =
0.70, p < .001), suggesting that the intervention has an upper-medium effect. Notably, this result is corroborated
by previous scholarly works on design thinking and the engineering design process. Moreover, the subgroup
analysis showed that there are significant differences among the moderators namely geographic region, group
selection, grade level, EDP model, and EDP skills. This suggests that to achieve a substantial effect of the
engineering design process on students’ cognitive learning outcomes, its implementation must consider these

relevant variables.

Noteworthy, the research also provided insights that randomizing students into treatment and control groups offers
the most robust basis for drawing causal inferences between the intervention and the observed outcomes.
Interestingly, Asian students demonstrated significant improvement in cognitive learning outcomes following the
implementation of the engineering design process. Conversely, the investigation also revealed that the duration of
implementation and class size do not moderate the effects of the engineering design process. This implies that the
engineering design process can be implemented in various class sizes or grade levels; however, for larger classes,
the involvement of multiple and skilled teachers is recommended. Additionally, the AIPCTI (Ask, Imagine, Plan,
Create, Test, Improve) and DDCTPE (Define the problem, Decide possible solutions, Create the design, Test,

Present, Evaluate) were the commonly used EDP models in the meta-analysis resulting in an upper-medium to
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large effect on students' cognitive learning performance. Overall, the implementation of the engineering design
process yields a significant medium to large effect size on core engineering knowledge and practice including the

skills related to cognition and thinking.

Limitations of the Research and Recommendations for Future Practice and Work

This meta-analysis provides empirical evidence on the effects of the engineering design process on students'
cognitive learning outcomes. To further guide the implementation of EDP, the following recommendations are
offered for future practice and opportunities for continued scholarly work.

1. It can be inferred that Asian students have experienced the engineering design process, and the research
has primarily focused on this region using control and experimental groups. However, more studies
should be conducted in other regions, such as America, Australia, Europe, and Africa, to further
strengthen and validate the results of this meta-analysis.

2. The duration of EDP implementation is not a significant factor based on the results. However, further
studies with varying durations are needed to investigate the effects of the engineering design process
(EDP) more thoroughly. Notably, using a valid dataset with (k = 10) for each duration of 4—6 weeks and
over 10 weeks may produce effect sizes up to the upper-medium range on cognitive learning outcomes.
This also suggests that increased exposure to EDP may lead to better learning outcomes.

3. Class size may not be a significant factor in the implementation of the engineering design process (EDP)
based on the results. However, smaller class sizes, such as 1-30 and 31-50, may produce an above-
medium effect size. Additionally, larger class sizes resulted in a larger effect size; however, these results
are not conclusive due to the uneven distribution of studies. Nonetheless, the findings suggest that to
effectively implement EDP in larger class sizes, more skilled teachers should be involved. Likewise, this
research recommends that other scholars also conduct research with 51-100 and >100 participants to
provide more insights on EDP.

4. Randomization is a crucial factor in research design. By randomly assigning learners to treatment and
control groups, researchers establish a strong foundation for making causal inferences between the
intervention and the observed outcomes. This process not only helps eliminate bias in the study but also
ensures that the groups are comparable at the start of the investigation, reducing the influence of
confounding variables.

5. Grade level is a key factor in the implementation of the engineering design process (EDP) across various
educational levels. High school (k = 13), in particular, had a large impact. Conversely, insignificant
effects were observed at the elementary level. However, this interpretation is not conclusive due to the
uneven distribution of studies. Further research should be carried out at the preschool, elementary, middle
school, and university levels.

6. The engineering design process (EDP) model is a crucial factor to consider in its implementation. Based
on the results, the researcher recommends the following models: DDCTPE (Define the problem, Decide
possible solutions, Create the design, Test, Present, Evaluate) and AIPCTI (Ask, Imagine, Plan, Create,
Test, Improve). On the other hand, further analysis should be conducted on other models.

7. Conclusively, the engineering design process enhanced the core engineering knowledge and practice
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including the skills related to cognition and thinking of the students. Noteworthy, this meta-analysis is
only limited to cognitive learning outcomes other variables may be explored.

8. As guidance for future researchers who will work with the same approach, it is recommended that team
size be included in the methodology if the teacher divides the groups into smaller engineering design
teams. This moderator was not included in the present meta-analysis due to limited reporting in most

studies.
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