

www.ijonest.net

Implementation of the High-Performance

Computing Summer Institute at Jackson

State University

Shuang Z. Tu

Jackson State University, USA

Chao Jiang

Jackson State University, USA

To cite this article:

Tu, S.Z. & Jiang, C. (2024). Implementation of the high-performance computing summer

institute at Jackson State University International Journal on Engineering, Science, and

Technology (IJonEST), 6(2), 112-131. https://doi.org/10.46328/ijonest.200

International Journal on Engineering, Science and Technology (IJonEST) is a peer-reviewed scholarly

online journal. This article may be used for research, teaching, and private study purposes. Authors alone

are responsible for the contents of their articles. The journal owns the copyright of the articles. The publisher

shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or

howsoever caused arising directly or indirectly in connection with or arising out of the use of the research

material. All authors are requested to disclose any actual or potential conflict of interest including any

financial, personal or other relationships with other people or organizations regarding the submitted work.

 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://www.ijonest.net/

International Journal on Engineering, Science, and Technology

2024, Vol. 6, No. 2, 112-131 https://doi.org/10.46328/ijonest.200

112

Implementation of the High-Performance Computing Summer Institute at

Jackson State University

Shuang Z. Tu, Chao Jiang

Article Info Abstract

Article History

Received:

20 August 2023

Accepted:

17 November 2023

 Between May 25, 2023 and June 21, 2023, we hosted the inaugural four-week

High-Performance Computing Summer Institute at Jackson State University. This

endeavor was made possible through the support of a three-year NSF CISE-MSI

grant. The primary objective of this Summer Institute revolved around the

engagement, education, and empowerment of minority and underrepresented

students in the realm of High-Performance Computing (HPC) within the field of

engineering. Nine undergraduate students with diverse background were recruited

to participate in this program. Throughout the program, we immersed these

students in a comprehensive curriculum that covered various critical facets of

HPC. This curriculum encompassed hands-on instruction in Linux operating

system command-line operations, C programming within the Linux environment,

fundamental HPC concepts, parallel computing utilizing the Message Passing

Interface (MPI) library, and GPU computing through OpenCL. Additionally, we

delved into foundational aspects of fluid mechanics, geometric modeling, mesh

generation, flow simulation via our in-house flow solvers, and the visualization of

solutions. At the end of the program, every participant was tasked with delivering

an oral presentation and submitting a written report encapsulating their acquired

knowledge and experiences during the program. We are excited to share a detailed

overview of our program's implementation with our audience. This includes

insights into our utilization of ChatGPT to enhance C programming learning and

our suggestion of the NSF ACCESS resources to gain access to HPC systems. We

are proud to announce that the program has achieved remarkable success, as

evidenced by the positive feedback we received from the participants.

Keywords

Engineering education

High performance

computing

Summer institute

ChatGPT

Introduction

Our recently funded three-year NSF grant titled “Collaborative Research: CISE-MSI: DP: FET: Modernizing

Numerical Flow Solvers with Heterogeneous Computing” is a joint project with the University of Mississippi.

The educational goal of this project is to leverage our expertise in developing numerical flow solvers to expose

and teach students various parallel computing and programming skills. We believe that parallel and distributed

computing must be an essential part of engineering and computer science education. In this project, we proposed

several educational components at both Jackson State University (JSU) and the University of Mississippi. The

International Journal on Engineering, Science, and Technology (IJonEST)

113

educational component at JSU is to host an annual 4-week High Performance Computing Summer Institute

(HPCSI). The goal of the summer program is to attract, educate and nurture minority and underrepresented

students in the field of HPC.

High-performance Computing (HPC)

High-performance computing (HPC) has become an indispensable tool in the field of science and engineering for

a multitude of reasons, addressing the ever-growing complexity and scope of modern engineering challenges and

handling vast amount of data. The need for quick and accurate simulations, data analysis, and modeling has grown

exponentially. HPC systems enable engineers to tackle these challenges by providing the computational

horsepower required to carry out compute-intensive simulations and process vast amounts of data. Whether

designing advanced aircraft using aerodynamic simulations, optimizing structures using structural analysis, or

studying the behavior of materials at the atomic level, HPC empowers engineers to perform tasks that would be

inconceivable with traditional computing resources. HPC allows engineers to quickly explore numerous design

possibilities, test hypotheses, and solve complex differential equations governing physical problems. Besides, in

the age of Big Data and sophisticated computational algorithms, high-performance computing has become a

fundamental enabler, driving innovation and efficiency. With the hope to simulate real-world conditions, high-

performance computing is an essential catalyst for innovation, efficiency, and progress within the field of science

and engineering.

Parallel Computing

HPC and parallel computing are closely intertwined. While HPC refers to the use of powerful computing systems

to address computationally intensive problems efficiently, parallel computing is a fundamental technique used to

achieve high-performance computing. Parallel computing is a method where multiple processors or processor

cores work together simultaneously to solve a problem. With parallel computing, a computing task is partitioned

into sub-tasks, i.e. dividing the workload among multiple processing units, such as central processing units (CPUs)

and/or graphics processing units (GPUs). All sub-tasks are executed simultaneously. This division of workload

among processing units speeds up computations, making it possible to conduct complex simulations and handle

large datasets that would be impractical or impossible with sequential processing.

Parallel computing techniques can be classified into various categories, such as task parallelism and data

parallelism, each tailored to different computational problems. These techniques are implemented through parallel

programming, where algorithms and software are designed to exploit the capabilities of multiple processors. For

example, parallel programing paradigms OpenMP and Pthreads are suitable for shared-memory systems while the

Message Passing Interface (MPI) is suitable for both the shared-memory systems and distributed-memory

systems. Parallel programming implements parallel computing, enabling HPC systems to tackle complex,

compute-intensive or data-intensive problems efficiently and harness the full potential of modern supercomputing

resources.

Tu & Jiang

114

In the past, parallel computing only utilizes multiple CPUs or CPU cores to speed up engineering simulations.

Today’s HPC systems are often also equipped with other processing units including general purpose GPUs, field-

programmable gate arrays (FPGAs) and other specialized accelerators, in addition to multiple CPUs or CPU cores.

Such diverse processing units introduce a concept of heterogeneous computing. With heterogeneous computing,

all computing units work together to perform and speed up computations. Heterogeneous computing requires

specialized software and programming frameworks to effectively manage and distribute tasks across different

processing units. Open standards like OpenCL, and CUDA have been developed to facilitate this process, making

it easier for developers to harness the power of heterogeneous architectures.

Lack of Education in HPC

The lack of education in HPC is a notable issue in many academic institutions including Jackson State University

(JSU). Many individuals are unaware of the significance and applications of HPC in various domains. This lack

of awareness can prevent them from seeking or offering HPC education. As a result, traditional computer science

and engineering curricula often do not emphasize HPC education. This omission leaves students unprepared for

real-world applications that demand HPC skills. Developing and maintaining an HPC curriculum requires

resources and funding, which may not be available at all institutions. In addition, many educational institutions

lack the necessary parallel computing infrastructure for teaching HPC effectively. Access to specialized hardware

and software can be limited, which hinders hands-on learning.

Addressing the lack of education in HPC is vital, as this field is integral to advancing scientific research,

engineering, data analytics, and simulations across numerous disciplines. Increasing investments in HPC

education, developing accessible curriculum resources, and fostering collaborations between educational

institutions and HPC centers are essential steps to bridge this educational gap and prepare students for the

challenges and opportunities in high-performance computing.

In this paper, we aim to present how we implement our NSF-sponsored 4-week HPC Summer Institute at JSU.

The paper is organized as follows. We first present the participant recruitment process and the development of

agenda plans centered around essential HPC topics we deemed necessary. Subsequently, we delve into an in-depth

description of each of these topics. Lastly, concluding remarks, discussions and recommendations intended to

benefit forthcoming summer programs with similar goals are given.

HPC Summer Institute Recruitment and Agenda

Recruitment

The HPC Summer Institute was planned to be held during the period between May 25, 2023 and June 21, 2023,

which coincides with the first summer session of Jackson State University. The recruitment flyer (see Figure 1)

was distributed campus wide in early January right after the 2023 spring semester started. As can be seen, we

required applicants submit a statement of interest about their understanding of HPC to ensure applicants have

some basic concepts of HPC before they attend the Summer Institute.

International Journal on Engineering, Science, and Technology (IJonEST)

115

By the end of March 2023, we accepted nine applications. Among the selected applicants, five are majoring in

computer science majors, three in engineering, and one in accounting. Three of the applicants are female, three

are international students, and five are of African American heritage. The GPA ranged from 3.2 to 4.0.

Figure 1. Advertising flyer for the High-Performance Computing Summer Institute

HPC Topics

High-performance computing in engineering is inherently multidisciplinary. It involves the knowledge

preparation in the following topics:

Tu & Jiang

116

1. Physics

(a) Classic mechanics (e.g., Newton's laws of motion)

(b) Laws of thermodynamics (e.g., first law of thermodynamics)

(c) Fluid mechanics (e.g., aerodynamics, hydrodynamics) and structural mechanics

(d) Combustion, chemical reactions, electromagnetics, etc.

2. Mathematics

(a) Calculus and differential equations

(b) Linear algebra

3. Numerics - various numerical methods

(a) Iterative methods, numerical integration, linear system solver

(b) Finite difference/volume/element methods etc.

4. Computer usage

(a) Unix/Linux environment

(b) Programming languages (C/C++, Fortran etc.)

5. Pre- and post-processing of data (e.g., mesh generation, solution visualization, line plots, etc.)

Summer Institute Agenda

Based on the topics listed in the previous sub-section, the agenda of the four-week Summer Institute was planned

as shown in Table 1. The Summer Institute took place in a computer lab that featured computers running the

Fedora Linux operating system. Instructors conducted morning sessions by delivering lectures, while participants

were given the opportunity to engage in practical, hands-on exercises on the assignments during the afternoon

sessions. Our lecture slides were sent to participants electronically after each morning session.

Table 1. HPC Summer Institute Agenda

Week Day Topic

Week 1

Day 1 Linux OS and Commands

Day 2 Linux OS and Commands

Day 3 C Programming on Linux

Day 4 C Programming on Linux

Day 5 C Programming on Linux

 Day 1 C Programming on Linux

 Day 2 Computational Methods

Week 2 Day 3 Computational Methods

 Day 4 Computational Methods

 Day 5 Computational Methods

 Day 1 MPI Programming

 Day 2 MPI Programming

Week 3 Day 3 MPI Programming

 Day 4 GPU Computing

International Journal on Engineering, Science, and Technology (IJonEST)

117

Week Day Topic

 Day 5 GPU Computing

 Day 1 Practice of Computational Fluid Dynamics

 Day 2 Mesh Generation

Week 4 Day 3 Flow Simulation

 Day 4 Solution Visualization

 Day 5 Participant Oral Presentations

HPC Summer Institute Topics in More Detail

In this section, the topics listed in Table 1 are elaborated in more detail.

Linux Operating Systems and Commands

Linux has become the dominant operating system for high-performance computing for several reasons such as its

excellent scalability, stability and reliability, security, and cost-effectiveness. Linux operating system is powering

most of the world's most powerful supercomputers and scientific computing clusters. For example, all the

supercomputers in the top500 list (top500.org) are based on the Linux kernel.

Basic Linux Commands for General Users

Linux provides an extensive set of commands that allows users to efficiently navigate and interact with the Linux

system through the command-line terminal. Most of our Summer Institute participants are newcomers to the Linux

environment. They felt intimidated to interact with the OS through the command-line interface. Nevertheless, the

Linux commands listed in

Table 2 are the most frequently used by ordinary users and suffice for everyday tasks. In addition, understanding

the concepts of absolute path and relative path helps to navigate through directories more efficiently.

Table 2. Basic Linux commands

Command category Commands Usage

File/Directory pwd

ls

cd

mkdir

cp

mv

rm

Display the current working directory's path

List files and directories in the current location

Change the current working directory

Create a new directory

Copy files or directories

Move or rename files and directories

Remove files or directories

Text editor nano or vi Text editors for creating and modifying text files

Text viewer cat Display the contents of a short text file

Tu & Jiang

118

Command category Commands Usage

less View a text file page by page

Search grep

find

Search for specific text patterns in files

Locate files and directories on the system

Remote Operation ssh

scp

Securely connect to remote machines

Securely copy files between local and remote systems

We demonstrated the use of every command and explained some commonly used options for each command. We

also emphasized the importance of the good practice of structuring contents using directories and sub-directories.

Significant amount of time was spent on demonstrating the use of vi as a source code editor. We leverage our

Red Hat Academy-designed Lab Environment to provide participants self-grading lab sessions on practicing basic

Linux commands.

C Programming on Linux Environment

In the realm of scientific computing, high-level programming languages such as C, C++ and Fortran are commonly

used to implement numerical algorithms by writing and compiling computer codes. These languages are favored

because of their high performance, extensive support for mathematical libraries (e.g., BLAS, LAPACK), and their

ability to take full advantage of parallel computing and vectorization, making them ideal for scientific computing

to solve large-scale complex problems.

Most of our participants have taken one or two programming courses. The languages they learned are most likely

Java and Python. Therefore, we think it is necessary to teach participants the C programming. Participants

typically have experience with editing and compiling source code within a graphical Integrated Development

Environment (IDE). However, programming in a Linux environment often favors the command-line approach.

Therefore, we initially demonstrated to participants how to edit C source code using the command-line vi editor

and subsequently guided them through the process of compiling C programs using the gcc compiler.

We did not create our own C tutorial since there are an abundant existing online resources. In this Summer

Institute, we chose the C tutorial offered at https://www.geeksforgeeks.org/c-programming-language/. Figure 2

lists the C programming topics offered at the website. Each topic is clickable leading to more detailed sub-topics.

In our lecture sessions, we explained each topic with the examples provided by ChatGPT. Since ChatGPT is a

conversational tool, it can easily create a relevant example according to the prompt context. It turned out ChatGPT

is an excellent teaching assistant and our participants loved the way of learning C programing with the help from

ChatGPT.

The website also provides extensive programming examples at https://www.geeksforgeeks.org/c-programming-

examples/. We selected some examples for the participants as hands-on practices in the afternoon sessions. We

asked the participants to edit the source code in vi and compile the source code using gcc in the command-line

terminal.

https://www.geeksforgeeks.org/c-programming-language/
https://www.geeksforgeeks.org/c-programming-examples/
https://www.geeksforgeeks.org/c-programming-examples/

International Journal on Engineering, Science, and Technology (IJonEST)

119

Figure 2. C Tutorial Offered at https://www.geeksforgeeks.org/c-programming-language/

Computational Methods

Several key ingredients of computational methods were briefly introduced to the participants. Each ingredient is

summarized as follows. A computer project was assigned for each topic to implement the algorithm explained in

the lecture sessions.

Time Integration Method

Time integration methods, also known as time-stepping methods, an indispensable tool in computational science

and engineering. These methods are designed to advance the solution of time-dependent problems, typically

governed by differential equations with temporal derivative terms, in discrete time steps. Time integration enables

the modeling of systems that evolve over time, such as fluid flows, structural dynamics, chemical reactions, and

more. These methods come in various forms, including explicit and implicit schemes, multistep methods, and

adaptive time-stepping algorithms. Stability and accuracy are the two factors when choosing a time integration

method. In this Summer Institute, the explicit methods of the Runge-Kutta family and implicit methods based on

Backward Difference Formula (BDF) were introduced to the participants.

Spatial Discretization for Partial Difference Equations (PDEs)

Due to the lack of analytical solution to general partial differential equations (PDEs) governing physical

phenomena such as heat transfer, fluid flow, electromagnetics, and structural mechanics, various computational

methods are widely employed in mathematics and engineering to approximate the solutions of differential

equations by discretizing the domain into a grid/mesh of finite points/cells/elements. As a result of such

discretization, the originally continuous differential equations are transformed into a set of algebraic equations

that can be solved computationally. The resulting system of algebraic equations is typically solved using linear

algebra techniques. Methods like the direct solver, iterative solvers, and preconditioning are applied to solve these

systems efficiently. Among the computational methods, the finite difference method (FDM), the finite volume

method (FVM), the finite element method (FEM), and their variants, are the most commonly used methods in

numerically solving PDEs.

Tu & Jiang

120

The finite difference method (FDM) operates on the principle of approximating derivatives in the differential

equation with finite difference approximations. To allow the finite difference approximation, the computational

grids must be structured (e.g., grids with clear row or column grid lines). Therefore, FDM is not well-suited for

problems with highly irregular or complex geometries.

The finite volume method (FVM) converts the integral form of the PDEs into a discrete form by considering the

conservation of mass, momentum, and energy over control volumes within a computational mesh. It provides a

natural way to account for the physical conservation principles, making it particularly suited for problems

involving fluid flow and heat transfer. The control volumes in the computational mesh can be of arbitrary

geometric shape. Therefore, the finite volume method has the advantage of being able to handle complex

geometries and irregular grids, making it a powerful tool for simulating a variety of computational engineering

applications.

The finite element method (FEM) is also able to handle complex geometries by discretizing the computational

domain into interconnected finite elements, e.g., triangles or quadrilaterals in 2D or tetrahedra or hexahedra in

3D. The solution over each element is approximated using the shape functions. The Galerkin orthogonality

principle is used to construct the weak form of the integral equations that can be evaluated by numerical quadrature

rules.

Linear Equation System Solver

As a result of temporal and spatial discretization, the originally continuous partial differential equations are

transformed into a set of algebraic equations that must be solved using linear algebra techniques. Linear equation

solvers employ various methods, such as direct methods like the LU decomposition, or iterative techniques like

the Jacobi method. The linear equation system resulting from the computational discretization in realistic

computational science and engineering applications is typically large, sparse and ill-conditioned. To efficiently

and accurately solve such systems, one must resort to practical iterative methods including the Generalized

Minimal Residual (GMRES) method for non-symmetric systems and conjugate gradient (CG) method for

symmetric systems. In both methods, an appropriate preconditioning technique must be employed to improve the

conditioning of the system to enhance the convergence and accuracy.

Newton-Raphson Iterative Method

Many computational engineering problems involve the solution of nonlinear equations or systems of nonlinear

equations in the form of 𝑓(𝑥) = 0. Due to its superior quadratic convergence performance, the Newton-Rahphson

method is the most efficient and widely adopted iterative method in finding the solution of nonlinear equations.

The Newton-Raphson method can be derived from the Taylor’s series expansion by keeping the first two terms.

Given an initial guess, the method iteratively refines the solution by using the function's value and derivative at

that point. By successively linearizing the function around the current estimate, the iteration converges rapidly to

a more accurate solution (cf. Figure 3).

International Journal on Engineering, Science, and Technology (IJonEST)

121

Figure 3. Graphical İllustration of the Newton-Raphson Method (diagram from pp. 65 of (Rao, 2002))

Numerical Integration

Numerical integration, also known as numerical quadrature, is another fundamental technique in computational

mathematics used to approximate the definite integral of a function over a specified interval, i.e. ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. It

provides a means to compute the area under a curve when an analytical solution is not readily available. Numerical

integration methods divide the integration interval into discrete sub-intervals. The total area under the curve is

obtained by summing the sub-areas within those sub-intervals. Traditional numerical integration methods, such

as the mid-point rule, trapezoidal rule (cf. Figure 4), and Simpson's rules, approximate the integrand function over

each sub-interval by a polynomial of some degree that can be easily integrated.

Figure 4. Illustration of Trapozoidal Rule for Numerical İntegration (Diagram from pp. 569 of (Rao, 2002))

By contrast, Gauss quadrature leverages orthogonal polynomials (often Legendre polynomials for the standard

Gauss quadrature) to determine the positions of quadrature points and their corresponding weights. By utilizing

these orthogonal polynomials, it ensures that the points are carefully placed in a way that minimizes the error,

resulting in a very accurate approximation for a relatively small number of quadrature points. For 𝑛 quadrature

points, Gauss quadrature can exactly integrate a polynomial integrand up to degree 2𝑛 − 1. Gauss quadrature is

implemented by transforming physical coordinates to standard reference coordinates (cf. Eq. (1)). Therefore,

quadrature points can be stored tabulated in reference coordinates. Due to its high efficiency and accuracy, Gauss

Tu & Jiang

122

quadrature rule is one of the most commonly used numerical integration techniques in computational engineering.

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

=
𝑏 − 𝑎

2
∫ 𝑓(𝑥(𝜉))𝑑𝜉
1

−1

≈
𝑏 − 𝑎

2
∑𝑤𝑖𝐹(𝜉𝑖)

𝑛

𝑖=1

 (1)

Introduction of Parallel Computing

MPI Programming

Message Passing Interface (MPI) library is one of the most commonly used parallel programing paradigms to

access multiple processors simultaneously and speed up computation. The choice of the MPI parallel paradigm is

due to its standardization, excellent platform independent portability and flexibility on both distributed memory

and shared memory machines. The parallelism is achieved via the Single Program Multiple Data (SPMD)

principle. The computational mesh is first partitioned across certain number of processes using the ParMETIS

library (Karypis) (cf. Figure 5). The partitioning ensures the number of elements is roughly the same on each of

the processes for the load balancing purpose. In addition, ParMETIS also minimizes the inter-process

communication overhead. The same numerical solver program is then executed on each of the processes on its

portion of the mesh simultaneously.

Inter-process communication occurs to synchronize the computation. Since the current cell-centered finite volume

and nodal finite element solvers are constructed on compact computational stencils, the inter-processor

communication involves only nodes, faces and elements on the partition boundaries (cf. Figure 6). This

compactness makes it trivial to attain high parallelizability using MPI for fixed-topology meshes. Very efficient

Figure 5. Mesh partitioning

Figure 6. Inter-Process Communication. Left: Element Communication, Middle: Vertex Communication, and

Right: Face Communication.

International Journal on Engineering, Science, and Technology (IJonEST)

123

non-blocking MPI functions can be called to set up the inter-processor “gather” and “scatter” routines in the pre-

processing stage (Johnson & Tezduyar, 1997; Tu et al., 2005). The communication overhead has been minimized

thanks to these routines.

OpenCL Programming for GPU Computing

OpenCL is an industry standard, cross-platform programming frameworks for scalable heterogeneous computing

platforms consisting of CPUs, GPUs and other co-processors. It includes a C-like language for programming

kernels (i.e., codes that run on target OpenCL devices such as GPU) and APIs needed to define and control the

platforms. OpenCL provides a parallel computing environment that targets data-parallelism and can greatly

improve the performance of a wide spectrum of applications in numerous disciplines. A number of scientific and

engineering applications have been successfully accelerated using OpenCL and CUDA (Both have a very similar

programming model, and we choose OpenCL for better portability across different vendors). Compute and data

intensive portions of solver are identified and programmed as kernels and offloaded to GPU. Thread mapping,

memory access pattern, and different memory spaces must be carefully investigated and optimized in order to get

the most out of powerful GPUs.

The OpenCL lectures were delivered by our invited speaker, Dr. Byunghyun Jang of the University of Mississippi,

who is also our collaborator of this project.

Computational Fluid Dynamics (CFD) Basics

CFD refers to Computational Fluid Dynamics. CFD is an interdisciplinary branch of applied mathematics and

engineering (see Figure 7) that involves the use of numerical methods and algorithms to simulate and study the

behavior of fluids, such as gases and liquids, in a wide range of complex scenarios.

Figure 7. Numerical Solution of Physical Problems

CFD plays a vital role in various fields, including aerospace, automotive engineering, environmental science, and

industrial processes. By discretizing the governing equations of fluid dynamics into discrete elements and solving

them iteratively on a computer, CFD allows engineers and scientists to investigate fluid flow patterns, turbulence,

Tu & Jiang

124

heat transfer, and a multitude of related variables. With reliable CFD tools, expensive physical experiments (e.g.,

wind tunnel experiments) can be supplemented and even replaced by numerical experiments in the design process.

A typical CFD simulation involves the following tasks:

 Mesh generation based on the given geometry.

 Set up the solver inputs and run the simulation.

 Solution visualization and analysis.

We used a concrete example explained in next sub-section to explain how to conduct these tasks.

Flow Simulation and Visualization

As the final stage in the Summer Institute, we provided the participants a hands-on project on how to conduct

CFD simulations using one of our in-house CFD flow solvers. Because of the time constraint, we asked

participants to solve a 2-D problem as illustrated in Figure 8. Participants can solve this problem using multiple

CPU cores on their local workstation to obtain the solution quickly.

Figure 8. Geometry of the CFD Example.

This case is about a laminar incompressible flow around a circular cylinder placed in a channel. Abundant

numerical results obtained via various numerical solvers are tabulated (Schafer, 1996). Therefore, this problem

has been widely accepted as a standard test case to verify and validate an incompressible solver. Since no-slip

boundary conditions are applied at the top and the bottom walls of the channel, a special parabolic inflow velocity

profile must be given to account for the zero velocity at the inlet tips of both walls. The velocity profile is given

as follows

2(0, ,) 4 () / , 0mu y t u y H y H v= - =

with 𝑢𝑚 = 1.5𝑚/𝑠 and 𝐻 = 0.41𝑚 as the height of the channel. The mean velocity at inflow is �̅� =
2𝑢𝑚

3
= 1.0𝑚.

The Reynolds number based on the mean velocity and the diameter of the cylinder is 100. At this Reynolds

number, the flow behind the cylinder is expected to become non-stationary and periodic Karman vortex shedding

should be seen.

International Journal on Engineering, Science, and Technology (IJonEST)

125

From this example, participants can gain insight of several fluid dynamics concepts such as boundary layers,

Reynolds number, vortex shedding etc..

Mesh Generation

We selected Gmsh (Geuzaine & Remacle) to generate an unstructured quadrilateral computational mesh for the

geometry shown in Figure 8. Gmsh is an open-source finite element mesh generation and post-processing software

tool designed for numerical simulations in various scientific and engineering disciplines. It provides a user-

friendly and versatile environment for creating complex 3D and 2D meshes, which are essential for solving partial

differential equations in fields such as computational fluid dynamics, structural analysis, electromagnetics, and

more. Gmsh is known for its capability to generate high-quality meshes for a wide range of geometries and its

flexibility in handling both structured and unstructured grids. With a graphical user interface and scripting

capabilities, it offers ease of use for beginners and extensive customization options for advanced users.

We demonstrated the process of mesh generation using Gmsh in detail. Figure 9 shows the mesh generated by

one of the participants. In this mesh, a square domain is created to enclose the inner cylinder to ensure the high

mesh quality near the cylinder. The grid lines are clustered near the wall boundaries including the cylinder wall,

and the top and bottom walls. The mesh file generated by Gmsh needs to be transformed into the format

recognizable by our in-house flow solver.

Figure 9. An Unstructured Quadrilateral Mesh Generated by One of the Participants

Flow Simulation

The CFD solver used in this simulation is one of our in-house flow solvers. This incompressible flow solver was

developed based on a hybrid cell-centered finite volume method and vertex finite element method (Tu & Aliabadi,

2007). The solver can solve both 2-D and 3-D problems with computational domain discretized by hybrid

elements. In addition, since the solver has been parallelized using the Message Passing Interface (MPI) library,

the solver is able to solve large-scale problems on parallel computing systems.

Before the simulation can be started, an input file must be created. The input file contains simulation parameters

such as the boundary conditions, linear solver (i.e. GMRES and CG) parameters, and other simulation control

parameters. The input file, together with the mesh files, are provided to the flow solver executable for the

simulation.

Tu & Jiang

126

Solution Visualization

During the simulation, the solution is visualized using ParaView. ParaView (Kitware) is an open-source, cross-

platform data visualization and analysis tool widely used in scientific computing, engineering, and data analysis.

It is known for its ability to handle large datasets, conduct sophisticated visualizations, and interact with

distributed computing resources using MPI parallel data processing. ParaView allows remote visualization

without the need of transferring large data sets from remote supercomputing systems to local workstations.

Since the flow remains unsteady, the simulation is stopped when the oscillating flow pattern is clearly seen in

ParaView. Participants are asked to use ParaView to create several images to show the simulated flow field.

Figure 10 and Figure 11 are two such images corresponding to an instantaneous moment. Figure 10 shows the

velocity magnitude field and Figure 11 shows the pressure contours in the domain. The vortex shedding nature

can be clearly seen in the flow field. Participants are also asked to use Gnuplot to plot the drag and lift coefficients

as a function of time. Figure 12 shows such plots.

Figure 10. Simulation Result: Velocity Magnitude Field

Figure 11. Simulation Result: Pressure Contours

Figure 12. Simulation Result: Drag and Lift Coefficients

International Journal on Engineering, Science, and Technology (IJonEST)

127

Conclusion, Discussion and Recommendations

In this paper, we reported how we executed our inaugural four-week High Performance Summer Institute

sponsored by a National Science Foundation grant. The program welcomed a diverse group of nine Jackson State

University undergraduate students, representing varied genders, majors, and nationalities. This summer initiative

was an intensive and immersive experience, offering participants a comprehensive exposure to a wide spectrum

of high-performance computing topics and extensive hands-on practice on each topic.

Towards the program's conclusion, participants were afforded the opportunity to engage in an HPC simulation of

a computational fluid dynamics problem. This practical approach can be adapted to other computational

engineering domains, including computational structural mechanics and computational electromagnetics.

High-Performance Computing (HPC) is inherently a multidisciplinary field, and acquiring proficiency in HPC

skills can be a formidable challenge with a steep learning curve. We did not anticipate that this four-week summer

program would transform the participants into HPC experts. Our primary goal was to enlighten and inspire the

minority and underrepresented participants about the world of HPC, igniting their interest in this domain and, in

the long tun, contributing to the growth of a diverse and skilled workforce in the HPC field.

This summer program has been executed effectively as evidenced by the positive feedback received from the

participants. Below are some selected excerpts:

“I am writing to express my heartfelt gratitude for the incredible learning experience I had under your

guidance during the HPC summer camp. The knowledge and skills I acquired during the one-month class

have been truly transformative, and I am immensely grateful for the opportunity to learn from you. Your

expertise, passion, and dedication to teaching have been evident throughout the program. Your ability

to explain complex concepts in a comprehensive and engaging manner has not only deepened my

understanding of computer science but also broadened my perspective on its interconnections with other

fields, particularly mathematics.” - By a participant.

“The summer camp has opened my eyes to the fascinating relationship between computer science and

mathematics, and it has ignited a strong desire within me to explore this connection further. I am now

more inspired than ever to pursue my studies in mathematics and delve deeper into the intricacies of this

interdisciplinary realm. Your guidance and instruction have been instrumental in this newfound passion,

and I am truly grateful for the impact you have had on my academic journey.” - By a participant.

Indeed, two of the participants became our undergraduate research assistant starting in the fall semester of 2023.

Nevertheless, in the implementation of this summer program, we have some suggestions to share with the readers

of this paper.

Tu & Jiang

128

Early Distribution of Recruitment Flyers

It turned out that the program recruiting flyer should have been sent out earlier in the 2022 fall semester. Many

students have already secured their internship positions by the time they saw our flyer. While many expressed

their interest, they have committed their 2023 internship positions.

Use of ChatGPT as a Teaching Assistant

In our summer program, we experimented with incorporating ChatGPT as a teaching assistant for instructing C

programming. Figure 13 provides an illustration of our utilization of ChatGPT to generate relevant examples

demonstrating the use of 'for' and 'while' loops. As depicted, ChatGPT operates as a conversational-style

generative chat tool, generating responses based on contextual cues. Students welcomed this way of learning

computer programming.

Hands-on Practice

In this intensive 4-week summer program, students could easily become disengaged and overwhelmed if

instructors solely delivered lectures without providing ample opportunities for hands-on projects. Our approach

of morning lectures followed by afternoon hands-on practices proved instrumental in sustaining students'

enthusiasm for learning and actively engaging them in the learning process. Moreover, learning HPC involves not

just theoretical knowledge but also practical expertise.

Use ACCESS Resources

ACCESS is an acronym that stands for “Advanced Cyberinfrastructure Coordination Ecosystem: Services &

Support.”

ACCESS is a program established and funded by the National Science Foundation (NSF) to help

researchers and educators utilize the nation’s advanced computing systems and services. Almost any

computer application that requires more than a desktop or laptop could qualify as needing an advanced

computing system. Examples include supercomputer applications, AI and machine learning, big data

analysis and storage, and others.” The ACCESS helps “researchers and educators, with or without

supporting grants, to utilize the nation’s advanced computing systems and services – at no cost. (from

ACCESS website).

We did not have a chance to utilize this valuable resource since we did not have sufficient time to complete the

application process before the summer program started. But we will definitely utilize this resource in future

summer programs.

Finally, we expect that the insights and experience acquired during this inaugural summer program will improve

International Journal on Engineering, Science, and Technology (IJonEST)

129

the overall efficiency and effectiveness of our future summer programs, ultimately providing greater benefits to

the participating students. Additionally, we hope that the readers of this paper will find valuable information to

enhance their own similar summer programs.

Tu & Jiang

130

Figure 13. An Example of using ChatGPT as a Teaching Assistant

Acknowledgements

The 2023 High Performance Computing Summer Institute at Jackson State University is sponsored by U.S.

National Science Foundation under the Award No. 2219542. We would also like to express our gratitude to Dr.

Byunghyun Jang from the University of Mississippi for dedicating an entire day to deliver a lecture on OpenCL

programming to our program participants.

International Journal on Engineering, Science, and Technology (IJonEST)

131

References

ACCESS. https://access-ci.org/

ChatGPT. https://chat.openai.com.

Geuzaine, C. & Remacle, J.-F. A three-dimensional finite element mesh generator with built-in pre- and post-

processing facilities, http://gmsh.info.

Gnuplot. http://www.gnuplot.info/.

Johnson, A., & Tezduyar, T. (1997). Parallel computation of incompressible flows with complex geometries, Int.

J. Numer. Meth. Fluids 24, 1321.

Karypis, G. (n.d.). ParMETIS — parallel graph partitioning and fill-reducing matrix ordering,

https://github.com/KarypisLab/ParMETIS.

Kitware. ParaView, https://www.paraview.org.

Rao, S.S. (2002). Applied Numerical Methods for Engineers and Scientists, published by Prentice Hall, ISBN-10:

0-13-089480-X, ISBN-13: 978-0-13-089480-9.

Schafer, M, Turek, S. (1996). Benchmark computations of laminar flow around a cylinder, in: E.H. Hirschel, (Ed),

Flow Simulation with High-performance Computers II, Notes on Numerical Fluid Mechanics, Vieweg,

547-566.

TOP500, https://www.top500.org/statistics/details/osfam/1/

Tu, S., Aliabadi, S., Johnson, A., & Watts, M. (2005). A robust parallel implicit finite volume solver for high-

speed compressible flows, AIAA Paper 2005-1396.

Tu, S. & Aliabadi, S. (2007). Development of a Hybrid Finite Volume/Element Solver for Incompressible Flows

on Unstructured Meshes, International Journal of Numerical Methods in Fluids, Vol. 55, No. 2, pp. 177-

203.

Author Information

Shuang Z. Tu

 https://orcid.org/0000-0002-4506-6447

Jackson State University

1400 J.R. Lynch St., Jackson, MS

USA

Contact e-mail: shuang.z.tu@jsums.edu

Chao Jiang

 https://orcid.org/0009-0002-4871-0397

Jackson State University

1400 J.R. Lynch St., Jackson, MS

USA

mailto:https://access-ci.org/
https://chat.openai.com/
http://gmsh.info/
http://www.gnuplot.info/
https://github.com/KarypisLab/ParMETIS
https://www.paraview.org/
https://www.top500.org/statistics/details/osfam/1/

