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Abstract: Due to availability of computational tools for data acquisition, it is very easy to collect many 

dimensions from an object. Nevertheless, data acquisition from an object in an experiment may have a low 

number of dimensions. The analysis of low dimensional data has break-through role. But raw and sparse nature 

of dataset imposes new challenges and requirements for data analysis due to their special and unique 

characteristics. In the process of overall characterization of low-dimensional data, the data pre-processing plays 

crucial role. One of the first processes is normalization and standardization process. Therefore, in this paper, I 

would like to propose novel standardization technique called SDFS (Standardization for Distribution Free 

Statistics) for nonparametric data analysis. This technique is robust for small sample size with missing values of 

data points, which commonly exist in real time experiments lead to sparse low-dimensional data.  The 

comprehensive experimental evaluation shows that SDFS standardization is significantly outperforms on 

existing standardization methods. 
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Introduction 

 

In the era of data analysis, the evaluation and analysis of real-world data needs systematic application of 

statistical and/or logical techniques to unravel and illustrate the knowledge. The techniques required for analysis 

process depends on the nature of real-world raw dataset.  The real-world raw dataset can be gathered from 

variety of sources and from different applications like research digital photography (Kelly 2015a), surveillance 

videos, field phenotyping and plant phenotyping (Kelly 2015) usually have high or low dimensions. 

 

The analysis of low-dimensional data, with missing data values and small sample size, refer to the possibility of 

limited amounts of available data and dimensions. The analysis process addresses the many data mining 

challenges associated with it. These challenges depend on whether data has distribution or not. If It has not any 

kind of data distribution, called nonparametric data analysis. This analysis makes fewer assumptions and are 

more flexible, robust and applicable to non-quantitative data (Hopkins 2018). But it must need data 

preprocessing for easier analysis. 

 

Commonly the data preprocessing method includes data cleaning, normalization, transformation, 

standardization, feature extraction and selection. One of the first step of data preprocessing is normalization of 

data because dataset dimensions have different units and scales. So, normalization process makes all dimensions 

are on same scale and range for fair comparison among them. In this paper, we considered the min-max 

normalization, a linear transformation, to preserve the behavior of the original data (Han 2012).  In general, the 

min-max normalization uses following formula for range [new_{max_a}, new_{min_a}]: 

V`i = (vi - mina).(newmax_a - newmin_a)/(maxa - mina) + newmin_a. 

 

The next step is data standardization, it is the crucial step of data preprocessing.  Because the variances of the 

normalized data dimensions are different. Standardization brings all attributes into proportion with one another 

for fair comparison among them (Standardization, Jajuga 2000, and Milligan 88).  The dimension with large 

variances tends to have a larger effect on the resulting analysis result than dimension with smaller variances. But 

the biggest challenge is that there are too many different kinds of standardization methods are available. 

However, selecting the best standardization method is very dataset dependent. The problem with existing 

standardization methods is that they are meant for parametric analysis. Therefore, in this paper we are 

contributing novel standardization method, called Standardization for Distribution Free Statistics (SDFS), for 

nonparametric analysis (Vatsa 2015, Vatsa 2017). SDFS is really useful for the preprocessing of sparse and 

small sample size dataset. It has been proven to be plausible way to address the problem of knowledge 

discovery, optimization, low dimensional data characterization like clustering and other data mining problems. 
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The motivation behind this method is the dataset of Dr. Ann Stapleton lab greenhouse experiment. The 

experiment was designed for maize plants in the greenhouse. The design principle was for ninety different 

inbred lines (different genetic backgrounds) of plants and forty plants of each line. These plants were treated 

with nine different growth conditions of nitrogen fertilizer and water.  There were four plants under each growth 

conditions except for growth condition five, which had eight plants. 

 

The motivation to know how these nine growth conditions determine the plant phenotype, observable and 

measurable traits of plant, led to proceed further. Therefore, they measured three prime phenotypes, well 

observable and measurable of each plant.  The phenotypes - plant height, canopy spread, and stem diameter - 

were measured before and after applying the different growth conditions. Many plants died during the 

experiment, so the number of surviving plants is often much lower.  Nevertheless, this dataset has not any kind 

of distribution. So, it needs nonparametric analysis for computing optimal growth condition of each inbred lines 

for each growth condition. Moreover, we were also looking for similar phenotypes among all ninety inbred lines 

(Vatsa 2015). But we were not able to solve these two problems because were not able to preprocess the data in 

right way. Therefore, I proposed SDFS, a novel standardization technique. 

 

The rest of the paper is organized as follows. Sections 2, contain related works of other existing standardization 

methods.  The proposed work is described in section 3. The results and discussion of the proposed technique and 

comparison with existing techniques are explained in section 4.  The scalable feature of proposed techniques 

discussed in section 5. Finally, our conclusions are given in section 5 and possible future work are also 

addressed. 

 

 

Related Work 

 

Walesiak \cite{walesiak90, walesiak99} states that  the standardization method is as follows  

 

zij = bxij + a, (b > 0) 

 

where zij (xij) denotes the value (standard value) of the j
th

 variable for the i
th

 object.  The particular (often used) 

case of transformation is the one where: b=1/ σ, a = - µ/ σ  

 

where µ is location parameter and σ is spread or scatter parameter. 

 

 

This can be written as zij = (xij − µ)/ σ 

However, the general existing standardization methods for parametric analysis are given as (stdize) 

f’(x) = α f(x)+ β (f o g(x))/ γ 

where: 

 

 f `(x) is the standardized variates; 

 f(x) is the measured attributes; 

 α and β are constants; 

 f o g(x) shifts the attributes; 

 γ is a   rescaling function. 

 

γ rescaling functions are hard to choose because the well-known standardization methods consider some 

descriptive statistics, such as sample mean, sample variance, weighted mean, weighted sum, sum, standard 

deviation, standard deviation about origin median, Median absolute deviation from median (MAD), Inter 

quartile range (IQR), range, midrange, Euclidean distance, Biweight one-step M-estimate (Owen 2010), 

Biweight A-estimate (Owen 2010, Goodall 83, and Kafadar 83} (A-estimators and M-estimators of location are 

independent of the underlying probability distribution function of the data because they minimize an objective 

function that is dependent on the distances from the observed values to the estimate. It is similar to Maximum 

Likelihood Estimators (MLEs)), Huber one-step M-estimate (Bickel 75), Huber A-estimate (Bickel 75, Goodall 

83, Iglewicz 83) (These identify robust member of group in asymptotic behavior and has independent identically 

distributed errors with F distribution symmetric about zero), Wave one-step M-estimate (Iglewicz83), Wave A-

estimate \cite{iglewicz83}, AGK estimate (a noniterative univariate form of the estimator) (ACECLUS) 

(Gnanadesikan 82), Mid-minimum spacing, Minimum spacing and L(p) or Minkowski metric (It is flat space 

metric used in special relativity. It is combination of Euclidean space and time into a four-dimensional manifold 
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where the space time interval between any two events is independent of the inertial frame of reference in which 

they are recorded) (Walesiak 99, Jajuga99, Wikipedia). 

 

In our experimental dataset the sample size is very small and so I can't determine its distribution, called 

nonparametric analysis.  Assuming a normal or some other distribution will be hazardous for the data analysis. 

Therefore, there is need to propose novel standardization technique for nonparametric analysis. 

 

 

Proposed Standardization, SDFS 
 

In this case the sample size of each combination of lines and growth conditions is too small to test the 

distribution of the data, so assuming a distribution would be hazardous for data analysis.  Therefore, I have 

proposed a novel method of standardization for the analysis of sparse and non-parametric data: 

fs(x) = (f(x) - min f(x))/f(x), 

where $fs(x) represents the value of standardized variates, and f(x) and min f(x) represents measured variates 

and minimum value of measured variates across groups, respectively. 

 

 

Results and Discussion 
 

In order to test the effect of proposed standardization techniques, SDFS, we compared SDFS with the other 

existing standardization techniques like Mean, Median, Sum, Euclen, USTD, STD, Range, Midrange, Maxabs, 

IQR, MAD, ABW, AHUBER, AWAVE, AGK, Spacing and L. Moreover, according to the experimental results 

we evaluated SDFS in terms of the data distribution (by Histogram), spatial data representation using three - 

Dimensional Plots and non-parametric clustering, called MODECLUS, output by three dimensional plots. The 

analysis of these results is explained in following sections. 

 

 

Data Distribution of Original and Rescaled Data 

 

The data distribution and frequency of original and rescaled data on three attributes; ∆h, ∆c, and ∆s; are 

represented in (Figure 1). The histograms of original (Figure 1a) and rescaled (Figure 1c) data is illustrated that 

these variates are asymmetric and have mixtures of positive, negative and zero data values. It also illustrates 

how wide data the range, shape and central location of the data are.  Therefore, on the evidence of distribution 

and on the basis of normal quantile-quantile plots (not shown), we can infer that these three attributes are not 

normally distributed. Moreover, the three-dimensional plots of the three attributes original (Figure 1b) and 

rescaled by min-max normalization (Figure 1d) between 0 and 1, depicted in Figure 1, show that the data points 

are so compact and overlapping each other that they cannot be visually separated. Therefore, there is need to 

standardize this dataset to unravel the unseen information hidden in the dataset. 

 

  

(a) Original (b) Original 
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(c) Rescaled (d) Rescaled 

Figure. 1. Distribution of Original and Rescaled Data 

 

 

Distribution of Data Standardized by Conventional and Proposed Methods 

 

The histograms and three-dimensional plots of three standardized attributes; ∆h, ∆c, and ∆s; are represented in 

Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, and Figure 7. These histograms show how wide data the range, 

shape and central location of the data are.  The peaks of the heights in the histograms show that the frequency of 

data values of dataset.  But both sides of the peaks do not have an equal number of data frequencies, which 

would make them look bell shaped.  These histograms are categorized in three categories based on their 

symmetry and data values range. 

 

The first category based on similarity among histograms and three-dimensional plots. This group shows 

standardization effect illustrated in Figure 2. The effect of standardization methods; L, Mean, and Median; are 

represented by histograms (Figure 2(a), Figure 2(c), and Figure 2(e)) and it shows the data distribution and 

frequency of three attributes. These histograms are asymmetric and have mixtures of positive, negative and zero 

data values. Whereas three dimensional plots (Figure 2(b), Figure 2(d), and Figure 2(f)) of this group shows that 

the data points are so diagonally compact and overlapped each other that they cannot be visually separated. 

Therefore, these standardization methods have not any positive effect on rescaled dataset. 

 

The second category is represented in Figure 3, Figure 4, Figure 5 and Figure 6 (a and c). These figures show 

that the data distribution is asymmetric and have mixture of positive, negative and zero values for 

standardization methods, STD and AGK. However, Euclen, AHUBER, AWAVE, IQR, MAD, Maxabs, USTD, 

Range and SDFS methods have data values between zero and one.  The three-dimensional plots of STD, Euclen, 

AGK, ABW, AHUBER, AWAVE, IQR, MAD, Maxabs, SUM and USTD are very dense center at top corner 

and overlapping to each other such that these standardizations have not any effect on rescaled data. 

 

On other hand the third category is represented by methods Midrange (Figure 7 (c) and Figure 7 (d)) and 

Spacing (Figure 7 (e) and Figure 7 (f)).  These histograms are asymmetric and have mixtures of positive, 

negative and zero data values. These histograms show how wide data the range, shape and central location of 

the data are.  The peaks of the heights in the histograms show that the frequency of data values of dataset.  But 

both sides of the peaks do not have an equal number of data frequencies, which would make them look bell 

shaped. 

 

Therefore, on the evidence of distribution and on the basis of normal quantile-quantile plots (not shown), we can 

infer that these three variates are not normally distributed.  Whereas methods, Range (Figure 6f) and SDFS 

(Figure 7b), three dimensional plots illustrate that most dispersed cloud produced, and we can even see by naked 

eye. Moreover, the cloud produced by SDFS standardization has very sparse and Most interestingly, there are no 

outliers after this standardization. Therefore, we can say that SDFS has better data distribution over other 

existing standardization methods. In next sub section we will be confirmed it by clustering outputs as well. 
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(a) L (b) L 

 

 
(c) Mean (d) Mean 

 

 

(e) Median (f) Median 

Figure. 2. Distribution of Standardized Data 

 

  

(a) STD (b) STD 
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(c) Euclen (d) Euclen 

 
 

(e) AGK (f) AGK 

Figure. 3. Distribution of Standardized Data 

 

 

  

(a) ABW (b) ABW 

 
 

(c) AHUBER (d) AHUBER 

 
 

(e) AWAVE (f) AWAVE 

Figure. 4. Distribution of Standardized Data 
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(a) IQR (b) IQR 

 
 

(c) MAD (d) MAD 

 
 

(e) Maxabs (f) Maxabs 

Figure. 5. Distribution of Standardized Data 

 

 

 

(a) SUM (b) SUM 
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(c) USTD (d) USTD 

 
 

(e) Range (f) Range 

Figure. 6. Distribution of Standardized Data 

 

 

  
(a) SDFS (b) SDFS 

 

 



International Journal on Engineering, Science and Technology (IJonEST) 

38 

(c) Midrange (d) Midrange 

 

 

(e) Spacing (f) Spacing 

Figure. 7. Distribution of Standardized Data 

 

 

Effect of SDFS on Clustering 

 

Since clustering is a very useful and popular data characterization method. To observe the effect of this 

characterization technique we used MODECLUS, a nonparametric clustering algorithm. The clustering 

performance is also used to evaluate the effect of the standardization technique. This standardization method 

helps MODECLUS in finding intuitive and natural clusters. 

 

Figure 8, Figure 9, and Figure 10 represent plots of MODECLUS clustering output of standardized values of 

data points of ∆h, ∆c, and ∆s, which are calculated using standardization methods L, Mean, Median, STD, 

Euclen, AGK, ABW, AHUBER, AWAVE, IQR, MAD, Maxabs, Sum, USTD, Range, SDFS, Spacing and 

Midrange.  The color of data points shows the cluster number in three dimensional plots. 

 

All plots of clusters shows most of the data points are assigned in only one cluster and cloud are either compact 

diagonally or in top corner of three dimensional plots except for Range (Figure 10 (c)), SDFS (Figure 10 (d)), 

Spacing (Figure 10 (e)) and Midrange (Figure 10 (f)).  The proposed novel standardization method (SDFS) 

clustering output (Figure 10 (d)) gives us clusters data points that are well separated with compact boundaries of 

clusters, as seen by eye, and distributed in the range [0,1]. Contrasting the most comparable plot of represented 

by range method but its clusters data points are sparse, and number of clusters are greater than this method as 

well. 

 

Therefore, the effectiveness of SDFS can be inferred that data points of clusters are well spread in three-

dimensional space, showing non-linear relationships among them. Therefore, we can conclude that proposed 

standardization method, SDFS, is better standardization for nonparametric analysis for sparse dataset. On other 

hand this standardization is not showing good results for non-sparse data for parametric analysis. 

 

Finally, the number of clusters and number of unclassified points with radius 0.20 at threshold 0.25 is shown in 

Table 1 using all existing and proposed standardization techniques (SDFS). Moreover, the clusters produced by 

range standardization is comparable, but it is very sparse around the space and number of clusters is ten with 

less density boundaries around the cluster’s boundary. In contrast, the SDFS has six number of high frequency 

data boundary clusters with 100% classification of data points of the dataset. 

 

Table 1. Summary of Number of Clusters Using Different Standardization Techniques 

Methods Number of Clusters Number of Unclassified Points 

Mean 5 0 

Median 5 0 

SDFS 6 0 

Range 10 0 

Sum 12 0 

Spacing 15 0 

Euclen 16 0 

ABW 19 0 
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AHUBER 19 0 

AWAVE 19 0 

IQR 19 0 

MAD 19 0 

Maxabs 19 0 

USTD 66 0 

STD 99 336 

AGK 100 341 

L 100 579 

Mid Range 100 59 

 

  
(a) L (b) Mean 

  
(c) Median (d) STD 

 

 

(e) Euclen (f) AGK 

Figure. 8. Clustering Output of Standardized Data 

 

 
 

(a) ABW (b) AHUBER 
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(c) AWAVE (d) IQR 

 

 

(e) MAD (f) Maxabs 

Figure. 9. Clustering Output of Standardized Data 

 
 

(a) Sum (b) USTD 

 
 

(c) Range (d) SDFS 

 
 

(e) Spacing (f) Mid-Range 

Figure. 10. Clustering Output of Standardized Data 
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Scalable Feature of SDFS on Clustering 
 

Since SDFS is a standardization technique of non-parametric analysis, there is need to test scalability feature for 

sparse datasets. Therefore, four synthetic dataset of samples – 3000, 6000, 7000, and 10000 – have been created 

using NumPy library of Python (NumPy 2020). The distribution and sparseness of synthetic dataset are 

approximately similar the raw dataset of greenhouse experimental dataset. The distribution of synthetic dataset 

is represented by histogram in figure 11. The histograms of sample size 3000 (Figure 11 (a)), 6000 (Figure 11 

(b)), 7000 (Figure 11 (c)), and 10000 (Figure 11 (d)) are illustrated and it shows that the data samples are sparse, 

and range of data points are between 0 and 1. It also represent the shape and central location of data which are 

similar (approximately) to experimental dataset. 

 

  

(a) Sample Size: 3000 (b) Sample Size: 6000 

  
(c) Sample Size: 7000 (d) Sample Size: 10000 

Figure. 11 Distribution of Synthetic Data 

 
In order to find number of clusters in synthetic datasets, the data samples are standardized using SDFS. 

Thereafter, the standardized datasets are processed using MODECLUS clustering (radius = 0.20 and threshold = 

0.25) method. The clustering output of sample size 3000 (Figure 12 a), 6000 (Figure 12 b), 7000 (Figure 12 c), 

and 10000 (Figure 12 d) are shown in figure 12. The color of data points in figure 12 shows the number of 

clusters. The figure 12 (a) and figure 12 (d) show only two clusters and most of data points belong to cluster one 

(red in color) and a few data points belong to cluster number two. Whereas figure 12 (b) and figure 12 (c) show 

four and five clusters respectively, these clusters are partially overlapping and representing natural clusters 

(arbitrary shape and size). Therefore, based on the result (figure 12), SDFS works perfectly if sample sizes are 

in the range of 3000 to 10000 data points.  

 
 

(a) Sample Size: 3000 (b) Sample Size: 6000 

 
 

(c) Sample Size: 7000 (d) Sample Size: 10000 
Figure. 12 Clustering Output of Standardized (SDFS) Synthetic Data 
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Conclusion 
 

Our experimental study show that the proposed method performs completely incomparable to other evaluated 

techniques.  It is superior over existing techniques are due to fact that they assumed that data has some 

distribution (parametric analysis), while proposed techniques is very useful for data that has not any kind of 

distribution (nonparametric analysis) and sparse dataset with mixture of positive and negative data values.  In 

contrast to existing standardization techniques, proposed standardization technique (SDFS) does not only aim at 

characterizing data but also will be used in finding optimization of methods in low dimensional data analysis 

process. Several questions remain to investigate in our future work like it outperform for univariate data, but we 

will have to make this for multivariate nonparametric analysis. 
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