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Abstract: With smart factory investment expected to increase 20% year-on-year over the next five years and 

total investment expected to reach $275 billion worldwide by 2027, the use of Artificial Intelligence (A.I.) to 

manage operations is receiving considerable attention.  This paper takes an in depth look at how factory data is 

being generated, stored, processed, transferred, trained and ultimately validated using A.I.  The conclusion is 

that deep machine learning is more than capable of controlling devices.  Yet, research shows only 14% of smart 

manufactures would describe their A.I. efforts as successful.  The problems are cost and application.  Smart 

manufacturing is almost exclusively done by multi-billion dollar operations.  Is this money well spent?  

Factories aren’t closed, linear systems. In these chaotic systems infinitesimal changes in any one of the myriad 

of input variables are capable of producing disproportionate changes in output values. As a result, no matter 

how much scrap, downtime, sales or on-time delivery data a company collects actual values will diverge 

exponentially from what existing A.I. algorithms are predicting.  Until more research is done predicting 

dynamic, nonlinear systems A.I. will not be capable of running a factory without human involvement. 
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Introduction 

 

The concept of machine-to-machine (M2M) communication isn’t new.  In the early 1970’s Theodore 

Paraskevakos patented the transmission of ―information from a calling telephone to a called telephone‖ (Link 

Labs, 2015).  By the late 1990’s, M2M communication decribed devices sharing data over networks. Over the 

following decades more and more data would be shared over a global Internet.  Today, the IoT (Internet of 

Things) encompasses some 50 billion data sharing devices worldwide (Techjury, 2021).  It’s estimated by 2025 

the number of IoT devices will reach 75 billion (Telecom Review, 2020).  

 

Data is being produced on an unprecedented scale. For example, in 2016 the world generated 2,500,000,000 GB 

of data each day.  Nearly 90% of all data that ever existed prior to 2016 came into existance during 2016 

(Mabkhot, 2018).  As impressive as the ability to generate data has become it pales in comparison to the ability 

to store it.  Worldwide data storage capacity (i.e. GlobalStorage Sphere) doubles every four years. Today, the 

GlobalStorage Sphere stands at 6,200,000,000,000 GB (Reinsel, 2020). Roughly 60% of this space is currently 

being utilized  (Techtarget, 2018).   

 

 

Cyber-Physical Systems 

 

The ability to generate and store continuous streams of data has allowed engineers to construct ―virtual 

factories.‖  In this digital world ―discrete event modeling‖ is used to describe the flow of products through 

production steps.  ―Agent-based modeling‖ allows programmers to place production elements (i.e. people, 

facilities, products, orders, etc.) inside simulated environments to observe system behaviors (Anylogic, 2020).  

 

Virtual factories are routinely used by the Volvo Group Global to validate proposed production changes before 

they’re introduced into actual plants (Jain, 2014). However, simulating factories has a number of limitations.  A 

factory is an open system.  Any number of outside variables (i.e. absenteeism, training, product mix, on-time 

delivery, inventory levels, machine breakdowns, scrap, etc.) impact what’s happening inside the system.  

Factories, like any open system, never settle down in to a steady state.  This presents serious problems for 

modelling.   Cyber-physical systems (CPS) address this weakness by continuously feeding information back 

into models. The result is computations monitor and control physical processes while feedback loops allow 

physical processes to update computations  (UC Berkeley EECS Dept., 2019).  

 

The ability for machines to collect, share, analyze and act upon vast amounts of data requires extremely fast and 

flexible computer processors (CPUs).  Multicore CPUs are capable of executing billions of calculations per 

second (GHz).  CPS, however, requires more - clusters of multicore processors working in parallel.  One such 
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cluster, the  IBM AC922, is made up of 4,608 computer servers.  In one second this supercomputer can perform 

200 quadrillion (e.g. 200 with 15 zeros) calculations (Bryner, 2018).  Fast processor speeds and memory 

transfers are at the heart of smart manufacturing.   

 

 

Artificial Intelligence (A.I.)  

 

A factory’s enterprise resource planning (ERP) systems transfer all of the accounting, production, supply chain, 

sales, marketing and human resources data using in-memory, relational databases.  ERP provider SAP requires 

at a minimum 60 GB of storage capacity.  The amount of data storage needed to run a business might seem like 

a lot – but it isn’t considering sensors, solenoids and actuators on a single IoT enabled device will typically 

generate 5GB of data per week.  Even with clustered processors it can take on the order of hours to extract 

structured (and unstructured) data in multiple disparate formats; transform it into a format that can be analyzed; 

and then load it into a data warehouse.  Collectively, delays in data extraction, transformation and loading is 

referred to as ETL lag.  Machine learning in near real time at factories must compensate for ELT lag.  This is 

commonly done using a lambda (λ) architecture which gives quick answers based on some of the data and 

accurate answers based on all of the data.   

 

The continuous flow of high variety data at high volume into λ architecture is accomplished by breaking data up 

into manageable chunks using a queuing system ―like Kafka and a streaming system like Storm, Spark or Flink‖ 

(Zweben, 2016). Algorithms on each coding layer become inputs to other algorithms on other coding layers.  In 

this way batches data transfers between layers once an hour or once a day (Huilgol, 2017).  As more-and-more 

data passes through more-and-more computations on more-and-more layers ―deep learned‖ model parameters 

are self-adjusted (i.e. ―trained‖) to make better predictions about future data.  To the extent existing labeled data 

matches predicted data the model is ―validated.‖  To the extent new data matches predicted data the model is 

―tested‖ for use.  New and old data continuously ―retrain‖ batch layer programs in the hope of improving how 

well algorithms can monitor and control physical processes.  Periodically, model predicted data is uploaded to 

serving layers for factory managers to view using NoSQL key value queries.   

 

Because the batching and serving layers are operating on the full data set, these machine learned algorithms are 

the most accurate.  Accuracy, however, comes at a high price.  Batch layers needs to ―store an immutable, 

constantly growing master dataset, and compute arbitrary functions on that dataset‖ (Saxon, 2012). Even with 

open sourced Hadoop batch clustering systems parallelizing data storage and computations, ETL lag time to 

propagate new data through batch layers can take hours.  Near real-time monitoring and control of physical 

processes in a factory requires a speed layer.   

 

Machine learned algorithms on a λ speed layer perform computations on the most recent data prior to uploading 

it to batch layers.  Fast reads and writes are possible because speed layer programs, unlike those on batch layers, 

aren’t ―continuously re-computing batch views from scratch‖ (Ulyanov, 2016).  ―Creating a deep learning 

model from scratch can take days or weeks to train, because of the large amount of data and rate of learning‖ 

(Tan, 2019). Databases on the speed layer, such as Cassandra or HBase, are capable of near real-time 

monitoring and control of physical processes because they’re incrementally updating views (i.e. ―transfer 

learning‖) created by analytics programs, such as MapReduce, Hive or Spark, on batch layers.   

 

Incremental programming logic makes the speed layer fast.  For example, with clusters of processors operating 

in parallel speed layer training times decrease from weeks to minutes.  Unfortunately, transfer learning and the 

random database reads and writes mean the speed layer is also, by far, the most complex. The beauty of λ 

machine learning architecture is system complexity is isolated to computing layers where data only exist 

temporarily.  Once data is uploaded to batch layers it’s purged from the speed layer making room for more 

incoming data and calculations.   

 

In light of data storage, transfer and computations needed to support machine learning, smart manufacturing is 

primarily done on severless, pay-for-use network clusters known as clouds. Indeed, spending on cloud infrasture 

as a service (IaaS) and software as a service (SaaS) reached $20 billion in 2019 (Sahu, 2020).  By 2025, it’s 

estimated that almost half of the world’s data will be stored in clouds  (Ang, 2020). Per Figure 1, five companies 

account for nearly 80% of the public cloud (Sahu, 2020).   
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Figure 1. The Public Cloud is Controlled by a Few Providers 

 

 

With the cloud being an integral part of achine learning it’s little wonder that each of the leading public cloud 

providers offer their own automated machine-learning packages (Knight, 2020).  Microsoft has the Machine 

Learning Studio.  Google offers Cloud AutoML and AWS uses SageMaker.  Widespread availability of cloud 

and coding architecture explains in separate studies consultants at McKinsey and PwC found between a quarter 

to a third of executives plan to roll out A.I. inititives.   

 

Even with automatically scalable cloud resources and 20x faster 5G downlink speeds capabke of supporting 10x 

more connected devices per unit of floorspace ―there’s latency concerns when sending data across networks and 

devices‖ (Wu, 2020).  Near real time machine learning on a speed layer requires bringing data storage and 

processing off centralized clouds closer to ―the edge’ where computation outputs are needed.  This is 

particularly true in factories when machine learning data may only be of interest to those applications generating 

data.  By leveraging a wide range of local devices and nearby datacenters, edge computing is key to supporting 

near real-time CPS (Shaw, 2019).    

 

 

A.I. Managed Facilities 

 

It has been said that the real manufacturing world is on the verge of ―converging with the digital manufacturing 

world enabling organizations to digitally plan and project the entire lifecycle of products and production 

facilities‖ (Hessmann, 2013).  Smart factories are an attempt to undertake production without human 

involvement.  Reaching this end involves a ―pyramid of four progressing levels: the device level, supervisory 

control and data acquisition (SCADA) level, manufacturing operations management (MOM) level, and 

enterprise level‖ (Industry Week, 2018).  A factory is ―smart‖ to the extent answers to the following 10 

statements are ―yes.‖ 

 

1. Algorithms decide inventory and production levels.  

2. Machines provide customers and associates with real time answers to their questions.  

3. Machines detect, sort and make corrections for nonconforming products. 

4. Algorithms predict quality issues.  

5. Algorithms predict maintenance needs. 

6. Image recognition locates parts in storage and production. 

7. Material handling equipment is self-directed.  

8. Algorithms create and validate designs.  

9. Production machines are self-operating. 

10. Production machines are self-programmed. 

 

Applying the above 10 points yields approximately $120 billion in worldwide smart factory market 
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capitalization.  It’s predicted by the end of 2027 global investment in smart manufacturing will reach $275 

billion (Shah, 2020).  It’s predicted that smart manufacturing over the next three years will grow at 1.7x the last 

three years  (Columbus, 2019).  In spite of these optimistic projections, a 2018 US Census Bureau survey of 

583,000 US businesses found only 2.8 percent had actually adopted machine learning (Knight, 2020).  A 

Capgemini Research Institute survey of 1,000 manufacturers with smart factory initiatives underway found only 

14% described their deployments as successful (Baggott, 2020).  A key issue holding A.I. back is conductivity 

between devices and analytics. A senior manager responsible for Virtual Methods and IT at a major automobile 

manufacturer blames poor conductivity on a lack of ―products and platforms available, ready to use, that we can 

simply purchase, implement, and then start using‖ (Capgemini Research Institute, 2019).  

 

One way around the conductivity problem is piloting AI projects across individual machines, work cells or 

departments.  On the one hand, modular deployments are a good way to realize short term gains.  In addition, 

modules allow users to better understand cost and technical challenges bringing solutions to scale.  However, 

piece meal machine learning isn’t always practical or economical.  Lambda architecture is inherently complex. 

Undertaking the implementation and maintenance challenges of keeping batch and speed coding layers in sync 

may not be worth the effort for individual work centers.  Not to mention, algorithm training may not be possible 

for a small number of machines given the massive amounts of data typically needed.  There’s also the issue of 

cost.  Cloud providers typically sell storage by the terabyte.  This amount of storage is likely more than a few 

smart machines will ever need.  The high cost of coding also needs to be considered.   Element AI reported ―in 

the entire world, fewer than 10,000 people have the skills necessary to tackle serious artificial intelligence 

research‖ (Metz, 2017). It’s unlikely that a company with modest A.I. goals has the money to compete with the 

Silicon Valley for talent.  Google’s DeepMind A.I. is paying roughly $300,000 per employee. It follows that 

―financial issues were the most commonly cited barrier to adoption of smart manufacturing technologies and 

processes‖ according to an RTI International report prepared for the National Institute of Standards and 

Technology (Gallaher, 2016).  Of RTI’s 80 interview subjects across ―a wide variety of smart manufacturing 

product and service providers, smart manufacturing end-user companies, and industry observers‖ nearly half (as 

shown in Figure 2) cited lack of financial resources as holding back A.I. 

 

 
Figure 2. Lack of Financing Slows A.I Adoption in Factories 

 

Given the high cost of smart manufacturing, when it’s done it’s done almost exclusively by large companies.  

For example, nine key players in the smart manufacturing value chain (e.g. Siemens AG, General Electric, 

Rockwell Automation Inc., Schneider Electric, Honeywell International Inc., Emerson Electric Co., and Fanuc 

Corporation) had a combined market capitalization of $257 billion in 2019.  In the U.S., almost half of all smart 

factories recorded over $2.5 billion in sales (Biron, 2017).  Wide spread use of A.I. in U.S. manufacturing is 

unlikely considering companies with over 1,000 employees make up only 0.3 percent of all U.S. factories (U.S. 

Census Bureau, 2017).  The best way to make smart technology more affordable, according to a European 

Commission report, is through public funding (Digital Transformation Monitor, 2017).  The U.S. government is 

funding smart manufacturing through the Manufacturing USA program.  Unfortunately, with federal 
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contributions typically in the $70-110 million range at a minimum of 1:1 public to private cost sharing, US 

government support goes almost exclusively to large companies (Manufacturing.gov, 2020). Researchers at 

IBM are seeking to make smart technology more affordable by ―reduc[ing] the number of bits, or 1s and 0s, 

needed to represent data—from 16 bits, the current industry standard, to only four‖ (Hao, 2020).  If successful 

this ―could increase the speed and cut the energy costs needed to train deep learning by more than sevenfold‖ 

(Hao, 2020).   

 

In addition to cost A.I. use in factories also suffers from lack of compatibility.  Every second, 127 devices are 

connected to the Internet (Gyarmathy, 2020).  Unfortunately, many of the 300 IoT platforms supporting these 

devices use their own ―infrastructure, proprietary protocols and interfaces‖ (Noura, 2019). Lack of interface 

explains why Materials Resource Planning (MRP), Supervisory Control and Data Acquisition (SCADA) and 

Enterprise Resource Planning (ERP) systems, all bought at different times, are likely unable to communicate. If, 

however, A.I. analytics is focused on individual systems with existing machine learning programs (like ERP) 

issues of cost and compatibility are mitigated.   

 

ERP involves the continuous flow of company data across: finance, quality management, HR, maintenance, 

procurement, production planning, materials management, sales and logistics.  ERP software makes it easy to 

collect, organize, analyze, and distribute this information because each department is using a single, defined data 

structure on a common database. The SAP Company, per Figure 3, is the market leader in the ERP business 

segment.  

 

 
Figure 3. SAP Leads ERP Providers 

 

A.I. in ERP works because standardized, ready-to-use, single vendor end-to-end solutions exist (Infoclutch, 

2021).  For example, subscribers to the SAP Cloud Platform have no need for onsite data centers.  Software-as-

a-service and updates are provided through SAP’s private cloud.  One of those updates is the SAP Data 

Intelligence Cloud.  Inside the Data Intelligence Cloud unstructured data is sent to the SAP Analytics Cloud for 

predictive pattern analysis using prebuilt machine learning algorithms.  The same happens for structured data on 

the SAP Data Warehouse Cloud. SAP provided machine learning algorithms are trained on the SAP HANA 

Cloud.  In this arrangement, unlike traditional λ architecture, separation of batch and speed layers to address 

ETL is not needed. SAP’s multi-cloud landscape has the computing power to bring analytics where the data 

resides.  As a company collects more-and-more data it’s theoretically possible for SAP algorithms to forecast: 

sales, receivables, payables, scrap, on time deliveries, etc.   

 

SAP Data Intelligence is attempting to predict how company data will evolve over time according to machine 

learned rules. Predicting future values for linear systems is possible because changes in input values are 

proportional to changes in outputs. Unfortunatey, Business transaction data in a factory is not linear. A very 

small difference between actual and learned conditions ―may have a significant impact at the highest factory 
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level‖ (National Research Council, 1995).  In other words, small changes in any one of a myriad of factory 

variables (i.e. number of people, uptime of machines, raw material delivery, throughput rates, inventory levels, 

process steps, etc.) produce totally unpredictable outcomes. As a result, the evolution of ERP data in a factory 

fits the definition of mathematical chaos.- i.e. a high dependence on initial conditions whereby value trajectories 

diverge exponentially over time drastically limiting any possibility of prediction  (Michel, 1996).  Even though 

SAP (and other ERP providers) offer A.I packages it’s highly unlikely in these chaotic systems machine learned 

algorithms will be able to forecast transaction values.  

 

Reservoir computing offers hope for a future when trained machine learning algorithms will be capable of 

predicting chaotic systems.  Reservoir computing ignores the problem of finding solutions to nonlinear 

equations. Instead reservoir computing algorithms focus on tracking data evolution (Wolchover, 2018).  

Researchers have been able to extend machine learned prediction timelines of chaotic systems in the lab using 

new measurements to retrain algorithms ―before the trajectories of the reservoir and original systems diverge 

substantially‖ (Fan, 2020).   

 

 

Conclusion  
 

Smart factories are all the rage.  The $4.4bn market in 2019 is expected to continue growing at 20% each year 

over the next five years.  Deep machine learning technology is well established as are the IoT devices, cloud, 

edge, 5G and coding architecture upon which it depends.  This technology, however, isn’t cheap.  Most, if not 

all, of the growth in smart manufacturing will take place among multibillion dollar companies.  Is this money 

well spent? According to a Capgemini Research Institute survey of 1,000 manufacturers with smart factory 

initiatives underway, only 14% described their deployments as successful (Baggott, 2020).  The A.I. issue in 

manufacturing is factories aren’t closed, linear systems. They’re chaotic system.  Infinitesimal changes in any 

one of the myriad of input variables to a factory are capable of producing disproportionate changes in output. As 

a result, no matter how much scrap, downtime, sales or on-time delivery data a company collects actual values 

will eventually diverge exponentially from what existing A.I. algorithms predict.  A.I. will not be capable of 

running a factory until more research is done on controlling dynamic, nonlinear systems.     
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