Continuity: From Intuition to

— Formalization — A Comprehensive Study
|J O N EST Gilda Rosa Bolafios Evia
Instituto Politécnico Nacional, México

International Journal on

Carlos Dominguez Albino
Instituto Politécnico Nacional, México

Seic

Yessica Romero Rosaldo
Instituto Politécnico Nacional, México

\ » Jorge Salvador Montes
- Instituto Politécnico Nacional, México

www.ijonest.net Pablo Vega Lara
Instituto Politécnico Nacional, México

To cite this article:

Evia, G.R.B., Albino, C.D., Rosaldo, Y.R., Montes, J.S., & Lara, P.V. (2025). Continuity:
From intuition to formalization — A comprehensive study. International Journal on
Engineering, Science, and Technology (IJonEST), 7(1), 83-97.
https://doi.org/10.46328/ijjonest.5817

International Journal on Engineering, Science and Technology (IJonEST) is a peer-reviewed scholarly
online journal. This article may be used for research, teaching, and private study purposes. Authors alone
are responsible for the contents of their articles. The journal owns the copyright of the articles. The publisher
shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or
howsoever caused arising directly or indirectly in connection with or arising out of the use of the research
material. All authors are requested to disclose any actual or potential conflict of interest including any
financial, personal or other relationships with other people or organizations regarding the submitted work.

M This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


http://www.ijonest.net/

|JONEST

International Journal on Engineering, Science, and Technology

2025, Vol. 7, No. 1, 83-97

https://doi.org/10.46328/ijonest.5817

Continuity: From Intuition to Formalization — A Comprehensive Study

Gilda Rosa Bolaiios Evia, Carlos Dominguez Albino, Yessica Romero Rosaldo, Jorge Salvador Montes,

Pablo Vega Lara
Article Info Abstract
Article History This study examines the difficulties students face in understanding the concept of
Received: continuity and its connection to key theorems such as the Fundamental Theorem
19 March 2025 of Algebra. The initial hypothesis suggests that the challenge lies not in the
?jzzztzz;s intuitive notion of continuity, but in its mathematical formalization, which is
defined through limits within a topological framework. Although students
approach problems continuously and intuitively, many struggle to translate their
geometric reasoning into formal algebraic representations. To support this
Keywords transition, the “Robot Trajectories™ activity was designed using a Problem-Based
Continuity

Learning (PBL) approach. In this task, 79 students, organized into 29 teams,
Fundamental Theorem of

Algebra analyzed different paths a robot could take to reach a target point. The trajectories,

Problem-based learning represented as piecewise polynomial functions, required students to identify the

Mathematization optimal route and link it to the corresponding function rule, often considering

Realistic mathematics . . C
obstacles along the way. While most teams relied on geometric intuition to

Education
approach the problem, only a few succeeded in achieving a solid algebraic
formalization. These results highlight the gap between intuitive understanding and
mathematical formalization, emphasizing the need for support for this transition
in engineering calculus education.

Introduction

Understanding why undergraduate students struggle with the concept of continuity in Differential and Integral
Calculus was a central objective of this study. In previous studies, the authors found evidence that part of this
difficulty lies in the transition from an intuitive perception of continuity to its algebraic formalization (Bolafios
Evia, G. R., Dominguez Albino, C., Hernandez Grovas, F. T., Romero Rosaldo, Y., Salvador Montes, J., Vega
Lara, P., 2025). This led us to design a Problem-Based Learning Realistic scenario to determine whether students
could apply their intuitive notion of continuity to solve a realistic problem and subsequently formalize that notion
algebraically through geometric and algebraic manipulation of concepts like polynomial roots, linear functions,
and piecewise functions. This analysis was conducted using the horizontal mathematization theory of Kirie and
Pieren ( Pirie, S. E. Kieren, T. E., 1994). and the vertical mathematization theory in the context of Realistic
Mathematics Education (RME), developed by the Freudenthal Institute in the Netherlands. (Freudenthal, H. 1991),
(Bressan, A., Gallego, M., Pérez,S., Zolkower, B. 2016), (van den Heuvel-Panhuizen,M. 2020).

For this purpose, we propose a didactic approach based on visual representation, which is more closely aligned
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with intuition (Reference), and gradually guides students toward formalization through a series of steps. The
"Robot Trajectories" activity presents a contextualized problem requiring students to model trajectories on a
Cartesian plane using polynomial and linear functions. According to the Pirie and Kieren model, this strategy
fosters deeper and more meaningful learning. This approach allowed the evaluation of students’ conceptual
understanding of continuity and the observation of how they develop their mathematical strategies and arguments
in problem-solving situations. For engineering automation processes, formalization is crucial, as it provides the
means to articulate precise instructions necessary for programming for implementation in artificial intelligence

systems.
Methodology

The study was conducted with 79 undergraduate engineering students organized into teams based on the principles
of Problem-Based Learning. The use of technology was restricted. The primary reason for this restriction was to
encourage students to identify and construct the required trajectories based on polynomial roots, piecewise
functions, and continuity. Use of technology would have enabled them to obtain these trajectories automatically

by simply identifying a few key points.

The level of students’ horizontal and vertical mathematization was measured using the Pirie and Kieren model.
Through statistical tests such as Fisher’s exact test, relevant associations were identified between the types of
justifications used and the accuracy of the responses. This approach made it possible to assess the students’
conceptual understanding of continuity and observe how they developed their mathematical strategies and

reasoning in problem-solving situations.
The distribution of teams according to academic program and the gender composition of their members—denoted

as W for teams with most women, M for teams with most men, and E for teams with an equal number of men and

women—is as follows:

Distribution

A B
uJIl.
E I
gIlI

Figure 1. Distribution of Teams
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The instrument is a realistic problem-based learning scenario in which a robot must move from a starting point to

a target using one of several given polynomial trajectories, followed by a linear trajectory, while avoiding

obstacles. It consists of four items.

Robot Trajectories

A robot needs to reach its target. To achieve this, it is necessary to represent the possible trajectories it can follow
on a Cartesian plane. The robot is indicated by the green point with coordinates (1,2), Its goal is the magenta star
at the coordinates. (2.5,-2). Due to obstacles represented by red diamonds and additional constraints, we have
found a method to help the robot reach its goal. First, the robot must follow a polynomial trajectory to the X-axis,
drawn in a yellow line, and then move in a straight line. The five possible polynomial trajectories are shown in

the following figure.

Figure 2. Possible Trajectories

Which trajectory do you think is best for the robot? Indicate it by retracing it with a pen on the previous figure.

Justify your answer.

This question focuses on an intuitive response that considers the criteria used for selection. Responses were
grouped into the following categories: height on the y-axis, curvature, arc length, directness, obstacles, polynomial

degree, simplicity, and speed. Based on these responses, the level of horizontal mathematization was measured.

1. The trajectories correspond to the graphs of the following functions:

_-2,2,8
a. f(x)= S X tox
b. g(x) =—-2x3+7x?—-3x

c. h(x)=—-x*+2x3—x2+2x

5 5
d. t(x) = —x5+2xt —1x 42
2 3 6

43,12 _1,,3

e. W(x)—sx toxt—ox+s

Circle the function corresponding to the graph you selected in the previous question.

In this question, we aimed to explore the association between geometric intuition and algebraic knowledge.
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Although no justification was required, some teams evaluated the trajectory at specific points to identify the

corresponding polynomial. Other teams assumed the selected trajectory was a parabola but did not verify it.

2. The functions that correspond to each of the trajectories are as follows:
2,28
a. f(x)= S X tox
b. g(x) =—2x3+7x?-3x
c. h(x)=—-x*+2x3—x%+2x

5 5
d t(x) = —x5+2xt —1x 42
2 37 T

e. w) =2x3+ix2-2x42
5 5 27 2

Figure 4. Possible Trajectories with Labels

Would you change your answer to question 1? Justify

This question explores whether the degree of the polynomial was a reason for students to change their initially
selected trajectory and, regardless of whether they changed their choice, what arguments they used to support
their decision. These arguments were classified as either geometric or algebraic and categorized as strong,
moderate, or weak, depending on whether they involved the roots of polynomials and whether mathematical
development was presented. Based on the justifications provided, the level of horizontal mathematization was

measured.

3. Ifthe black points are on the X-axis, can you help the robot by finding the equation of the line that joins
the black point on the graph you chose in the previous question with its target? Explain how to find the
line’s equation to help the robot.

4. Can you define a function for the complete trajectory?

In this question, we identified whether a solution was provided and if the solution was correct or incorrect. Based

on the procedures, the level of horizontal mathematization was evaluated.

By analyzing the written justifications provided by the teams, the level of mathematization they achieved was

measured. Using all procedures applied throughout the scenario, the highest level of horizontal mathematization
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achieved was determined, and the level of vertical mathematization was also assessed.

The analysis of the mathematization level achieved by the students was conducted within the framework of the
Pirie and Kieren model of Growth in mathematical understanding (Pirie, S.E., Kieren, T. E., 1994). The horizontal

level consists of eight levels.

1. Primitive Knowing: The student has informal prior knowledge of the topic, acquired through everyday
experience.

2. Image Making: Mental images of mathematical concepts are formed through experimentation and

exploration.

Image Having: Confidence is gained by manipulating images without constantly reconstructing them.

Property Noticing: Patterns and mathematical properties within the explored concepts are identified.

Formalizing: Properties are organized and structured into more general mathematical principles.

AR

Observing: The acquired knowledge is analyzed, and a more abstract perspective of the mathematical

concept is established.

7. Structuring: The concept is recognized in different contexts, and knowledge is applied to broader
situations.

8. Inventing: Advanced levels of understanding are reached, where new mathematical ideas can be created

and knowledge extended.

For the analysis of horizontal mathematization, Folding Back was identified, which is a distinctive element of the
mathematization theory in the context established by Pirie and Kieren. This element refers to a learner returning
to earlier levels of understanding when they encounter difficulty at a higher level (Pirie, S. E., Kieren, T. E., 1994).
We also considered the four levels of vertical mathematization in the context of Realistic Mathematics Education
(RME), which emphasizes the progression of learners' mathematical understanding through a process of
mathematization, whereby students transition from informal, contextually grounded reasoning toward

increasingly formalized and abstract mathematical concepts and structures.

1. Situational Level: Students begin understanding problems in real-life or meaningful contexts. Reasoning
is based on informal knowledge and interpretations grounded in the specific situation.

2. Referential Level (Model of): Context-specific strategies and models emerge. Students create
representations (diagrams, tables, etc.) that refer to the original situation. Models and strategy are still
closely tied to the context.

3. General Level (Model for): The previously context-specific models are now used more generally,
becoming tools for reasoning in other situations. Shift from "model of a situation” to "model for a
situation " broadens mathematical reasoning.

4. Formal Level: Students operate inside the domain of formal mathematics, using symbols, procedures,

and abstract reasoning. Independent of the original context, with a focus on mathematical structure.

The statistical analysis was conducted using Fisher’s exact test.
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Results

Per question

Question 1
Figure 5.
Table 1.
Math. Height Curvature Arc Direct Obstacles Polynomial Simplicity Speed
Level / on length degree
Argument  they-
axis
1 0 0 2 0 0 0 0 0
2 0 1 6 1 0 1 2 2
3 1 0 6 0 1 0 0 0
4 0 0 4 0 0 0 2 0

Responses were categorized based on the justifications provided by the teams. The majority selected the pink
path, justifying their choice by stating it was the shortest. Only one or two teams chose other paths, and no team
selected the black path. The maximum level of mathematization attainable for this question is level 4, which
appears reasonable given that the question emphasizes geometric intuition rather than encouraging algebraic

formalization. At level 2, a greater diversity of reasoning approaches was observed.

Question 2

The fact that the correct answers to this question were disclosed in Question 3 likely influenced the limited number
of teams that attempted a formal procedure to determine the polynomial associated with their chosen path.
Nonetheless, some teams justified their selections using polynomial roots, establishing a coordinate scale along

the x-axis and assigning coordinates to the points accordingly.

Question 3

After being presented with the polynomial function associated with each trajectory, teams are required to decide

whether to revise their initial selection and provide a justification. These justifications are categorized based on

their geometric or algebraic nature, with particular attention given to the use of polynomial roots and the quality
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of their reasoning, classified as good, fair, or poor. The level of horizontal mathematization is assessed.

Additionally, we examine whether there is an association between the gender composition of the teams, the type

and quality of the argument, the use of roots, and the academic program.

Table 2.
Argument Geometric Algebraic
Change No Yes No Yes
Quality Good 11 1 5 2
Average 1 1 0 1
Poor 2 2 3 0

Fisher’s Exact Test revealed a non-significant association between changing their selected trajectory vs the

argument (p = 0.75), type of argument vs response quality (p = 0.9471). Most teams do not alter their selection,

as much of the reasoning is well-founded and grounded in geometric principles.

Table 3.

BA Aero Bio Pharma Industrial Automotive

program

Gender E wW E M W E M W E M W E M W

Group

Good 0 1 1 2 1 0 2 0 0 6 3 0 1 0
Z Average 0 1 0 0 0 0 o0 0 0 1 0 0 1 0
g Poor 0 0 0 0 0 1 0 2 1 0 0 0 1 0

Fisher’s Exact Test revealed a non-significant association between quality and gender group. (p = 0.8209),

quality vs BA program (p = 0.8021),gender group vs BA program (p = 0.8021).

Table 4

BA program Aero Bio Pharma Industrial ~ Automotive

GenderGrop E M W E M W E M W E M W E M W

2 o 1 o0 o0 1 1 0 O O 1 2 1 0 O 0

) 3 o 1 o0 o0 o0 o0 o0 1 1 0 3 2 0 3 0
>

S 4 o o o0 o0 1 o0 1 o0 1 0 3 0 0 O 0
=

é 5 o o 1 1 0 O O 1 O O O 0 0 O 0

6 o o 1 0 o0 o0 o O o O O 0 0 O 0

Fisher’s Exact Test revealed a non-significant association between the BA program and math level (p =

0.1843)gender group and math level (p = 0.4606). The highest level of mathematization observed was 6,

attained by only one team.
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Table 5

Response Average Good Poor

Quality

Polynomial

Roots
2 No
Yes

(o)}
—_

Yes

Math. Level
=<
2
(] [«] (] [\ o o
[\o] (e} N

S O N =
S O O O O W o W o

Fisher’s Exact Test revealed a significant association (p = 0.0317) between the math level and the use of
polynomial roots; the maximum level (6) was reached using polynomial roots. Most teams do not use polynomial

roots. The quality of response and the use of polynomial roots are independent.

The limited use of polynomial roots may be attributed to several factors. In algebra instruction, there is often a
lack of effective geometric integration. In the Robot scenario, the coordinates of the points on the x-axis are not
provided; using roots requires determining these coordinates. Without technological tools, students must rely on
manual calculation, which can be challenging in certain cases. Moreover, the correct placement of grouping

symbols remains a common issue, even at the university level.

Question 4

In this question, students must find the equation of the line that joins the black point on the graph they chose in
the previous question with its target and explain how they construct the line’s equation. Solutions were classified
according to correctness and type of solution. Although the equation of a line might be considered a low-difficulty

task by instructors, we found further evidence that students face challenges formulating the equation correctly

Fisher’s Exact Test yielded a statistically significant result (p=0.001), indicating a robust association between the
solution type and response accuracy. Most teams employ polynomial roots, developing a theoretical approach
that fails to formalize as an explicit function. The likely causes for this shortfall are geometric-algebraic, as
discussed after the commentaries on Question 3. The highest percentage of correct responses are explicit solutions
using polynomial roots, while most incorrect responses are theoretical involving roots. The mathematization level
is correlated with the type of response(p = 0.002), with higher levels achieved in explicit answers that use roots.

The maximum level reached is 6, just as in question 3, but the number of teams at that level increased.
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Table 6
Type Explicit Theoretical  Explicit Linear Theoretical
Linear Derivation of Equation Derivation of
Equation Linear Derived Linear Equation

Derived via Equation via  Independently Independent of

Polynomial  Polynomial of Polynomial Polynomial
Roots Root Roots Roots
Solution
2 Correct 0 0 0 0
Incorrect 0 1 1 0
Math. No solution 0 0 0 0
Level 3 Correct 0 0 0 0
Incorrect 0 0 0 0
No solution 0 0 0 3
4 Correct 2 2 0 0
Incorrect 3 9 1 0
No solution 0 0 0 0
5 Correct 2 1 0 0
Incorrect 0 0 0 0
No solution 0 0 0 0
6 Correct 1 1 0 0
Incorrect 1 0 0 0
No solution 0 0 0 0

Question 5

Students must define a piecewise function for the complete trajectory of the robot; 24% of teams could not
construct the function. The maximum level reached is 6, but the number of teams at that level increased. All the
defined functions were continuous. In some cases, the segment of the line that ensured the robot would reach its
target was not specified. Certain teams introduced their notation for piecewise-defined functions but failed to
explain it. Additionally, some teams employed vector-valued functions, as observed in the image; not all

trajectories can be described as functions of a single variable.

Al
P

Figure 6.
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Table 7

Math. Level Correct Incorrect  No

Q5 Solution
1 0 0 1

2 1 2 1

3 0 2 3

4 0 6 1

5 2 0 1

6 4 2 0

Global

An analysis of the teams’ progress throughout the instrument reveals that those employing algebraic reasoning in
question three provide explicit solutions, with none offering a purely theoretical response. This suggests that
certain teams encountered difficulties establishing connections between geometric and algebraic representations.
However, when the processes are integrated in question five, no significant differences are observed between
geometric and algebraic arguments in terms of response accuracy. This indicates the presence of the folding back
process between questions 3, 4, and 5, facilitating reflection on prior processes and then promoting advancement

in the level of mathematization (see figure 7).

Table 8.
Solution question S Correct Incorrect No
Solution
Type of solution at question 4
Explicit Linear Equation Derived via 2 2 3
Polynomial Roots
Explicit Linear Equation Derived 1 4 1
Independently of Polynomial Roots
E Geometric  Theoretical Derivation of Linear Equation 0 2 0
2 via Polynomial Root
E‘ Theoretical Derivation of Linear Equation 0 0 3
g Independent of Polynomial Roots
% Explicit Linear Equation Derived via 0 1 1
“2 Polynomial Roots
% Explicit Linear Equation Derived 4 2 2
Independently of Polynomial Roots
Theoretical Derivation of Linear Equation 0 0 0
via Polynomial Root
Theoretical Derivation of Linear Equation 0 0 0

Algebraic  Independent of Polynomial Roots
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Fisher’s Exact Test also reveals a statistically significant association (p = 0.02) between response accuracy on

Questions 4 and 5.

Table 9
Function Q5 Correc  Incorrect  No solution
Solution Q4 t
Correct 5 1 3
Incorrect 2 10 4
No solution 0 1 3

Figure 7. Progression in the level of mathematization

Math.Level.Q4

Mathematization

BAProgram

Figure 8
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We calculated the highest level of mathematization achieved by each team and compared the results across the
different academic programs. Fisher’s Exact Test yielded a non-statistically significant result (p=0.7182),

indicating independence between the BA program and the mathematization level.

Comparing the highest level of mathematization between the explicit and theoretical solutions, a difference was
observed again. Fisher’s Exact Test yielded a statistically significant result (p=0.036), indicating an association

between the solution type and the mathematization level.

Mahematization

Expiict Theoretical

F Nivel Mat

Solution

Figure 9

No significant differences were observed in the level of mathematization concerning the gender group.
E

Although there is no significant difference between the theoretical and explicit solutions associated with gender

Mathematization

Math Level
4

Gender

Figure 10

composition, it can be observed that in groups with most women, only explicit solutions were provided
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Mathematization

] w

Tipo.Solucién

E
| I

FI

Gender

Figure 11

Discussion

In previous studies (Bolafios Evia, G. R., et al., 2023), we found differences in the form students approached
problem-solving across academic programs. This difference is not observed in this case, which may be because
this scenario poses more specific questions, thereby guiding the problem-solving approach more directly.
Although there is no statistically significant difference in problem-solving approaches based on the gender
composition of the teams (p = 0.25), all teams with a female majority provided explicit solutions. This result may
be influenced by the fact that, in the Automotive Systems program, all teams were composed mostly of men. This

reflects what naturally occurs in the academic program.

One objective of the study was to measure the level of vertical mathematization. However, due to the nature of
the scenario and the time limit assigned for solving it (a maximum of 60 minutes), teams operated between the
situational and referential levels. To reach a general or higher level, the scenario would need greater flexibility
and complexity, encouraging students to propose original, intuitive solutions that they could then formalize using
their mathematical knowledge or more advanced mathematics. In this scenario, we observe the interaction
between horizontal and vertical mathematization. The highest level of horizontal mathematization reached was 6,
which naturally places the vertical mathematical level at a referential level. To promote a higher level of

mathematization in this scenario, requesting animations, programming, or alternative trajectories might be useful.

A particular issue detected in some cases was that the x-axis scale presented was inconsistent (not proportional to
distance or disordered), which affected their progress in answering questions 4 and 5. We believe this is partly
because, in general, when graphs are presented to students, the axis scales are predefined. However, when students
face the problem of graphing functions or equations, they often do not understand the importance of establishing
an appropriate scale. Even when using technological tools, they may misinterpret a graph due to the automatic

scaling applied by the software.
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Conclusions

As stated at the beginning, continuity comes naturally; most teams attempted to construct a continuous piecewise-
defined function; however, most could not formulate it correctly. While some teams introduced their notations for
piecewise functions, these were often imprecise or lacked a formal definition. The Folding Back process was
observed during the scenario's solution, particularly between questions 3.4, and 5. Mathematization. Contrary to
expectations, no differences were observed in horizontal mathematization between academic programs, semesters,
type of argument, or use of roots at levels 3, 4, and 5. The difference is observed in horizontal mathematization

between explicit and theoretical solutions, with explicit solutions demonstrating a higher level.

Recommendations

A possible next step in this line of research is to explore the impact of implementing broader, realistic problem-
based learning scenarios that can be developed over extended periods, potentially outside the classroom, where
use of technology is permitted and supports meaningful learning. Such an approach may enhance student
engagement. To improve understanding of appropriate scaling in graphical representations, a focus on scales and
proportions in graphical representations, incorporating activities that challenge students to define scales manually
before using software tools, is recommended. Future studies could explore the relationship between team gender
composition and the types of solutions proposed, considering more diverse and balanced samples across academic

programs.
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