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Abstract: A multidisciplinary and multi-objective optimization approach that integrates the design of the 

control surfaces’ sizes, active control system, and estimator for an aircraft’s wing with three control surfaces is 

developed in this paper. Four objectives are considered: minimizing impacts of external gust loads, maximizing 

stability robustness, reducing control energy consumption, and minimizing the Frobenius norm of the estimator 

gains. For simulation purposes, a mathematical model of a flexible wing having three ailerons is used. The 

control system and observer are designed simultaneously. The optimization problem is formulated and solved 

by NSGA-II (non-dominated sorting genetic algorithm II). The solution of the optimization problem is called 

the Pareto set and the corresponding set of function evaluations is called Pareto front. The properties of the 

Pareto set and Pareto front; sensitives of the dominant poles of the open-loop system, closed-loop system, and 

estimator to the airspeed; and responses of the controlled, uncontrolled, and observer models at selected 

objective values are obtained. The results shows that the simultaneous design of the control and estimator 

algorithms, and the geometry of the ailerons in the multi-objective settings is very effective, the closed-loop 

control system can suppress the flutter and stabilize the system, and the estimator converges very quickly and 

always stable regardless of the air stream velocity. 

 

Keywords: multidisciplinary and multi-objective optimization, control systems, observer design, flexible 

aircraft wings   

 

 

Introduction 

 

Multidisciplinary design of flexible structures such as aircraft wings has helped improve their performance in 

the past. During the design, wing’s geometrical parameters and control gains are varied to simultaneously 

satisfy multiple and often conflicting requirements. Design objectives such as maximizing the stability of the 

aeroelastic structures, suppression of instabilities, robustness against gust loads and measurement noise, and 

minimizing energy consumption are critically important when designing active aeroelastic controls. Therefore, 

additional work on the subject can further improve their performance by combining the concept of 

multidisciplinary design with that of multi-objective optimization.  

 

There have been a few research efforts in the field of multidisciplinary optimal design (MOD) of aircraft wings. 

For example, an MOD of an aircraft wing was investigated by (Khot, Appa, and Eastep, 2000) to enhance a 

wing roll performance at high dynamic pressures. The structure of the wing was optimized first to obtain a 

feasible flexible wing. Then, an optimal control design was conducted to determine the distribution of actuators’ 

forces. Singh and his colleagues formulated two optimization problems (Singh & McDonough, 2014). In the 

first problem, the chord fraction of an aileron attached to a wing was selected as the tuning parameter. In the 

second problem, only the span-wise length of the first control surface of a wing having multiple control surfaces 

was selected as the design variable. In both problems, the optimization goal was to minimize the control system 

energy through minimizing the norms of the control gains while satisfying some constraints on closed-loop 

poles, which define the extension of the open loop flutter boundary. Likewise, Brown and Singh optimally 

adjusted the locations, span-wise lengths, and chord sizes of a leading and trailing edge control surface under 

static constraints related to the size of the control surfaces as well as dynamic constraints related to the active 

pole placement for flutter boundary extension (Brown & Singh, 2015). In another study, (Brown, Singh, & 

Kolonay, 2017) used genetic algorithms to tune the size, location, and number of leading and trailing control 

surfaces of a fighter wing model. The optimization goal was to achieve an active aeroelastic control for flutter 

boundary extension with minimum control effort. Therein, two cases were considered. In the first optimization 

problem, the number of control surfaces was fixed while their chords, span lengths, and locations were tuned. In 

the second optimization problem, the number and locations of control surfaces were tuned while their sizes were 

fixed. In another work, a series of aeroelastic optimization problems for a subsonic transport wing under a 
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variety of static and dynamic constraints was solved by (Stanford, 2016). In one of these optimization problems, 

the mass of the wing was minimized by simultaneously tuning its structural variables (skin thickness, stiffener 

details), the quasi-steady deflection scheduling of a series of control surfaces distributed along the trailing edge 

for maneuver load alleviation and trim attainment, and the design details of a Linear Quadratic Regulator 

(LQR). By the same token, Nam, Chattopadhyay, and Kim (2000) employed genetic algorithms for an 

integrated simultaneous aeroservoelastic design of a composite aircraft wing. Eight design variables consisting 

of the ply orientation of the composite layer, wing sweep angle, taper ratio, aspect ratio, span wise location, and 

size of the control surfaces were selected as design parameters. The objective function was defined as a 

weighted sum of 25 index values, which are LQR performance index based on an output feedback controller at a 

design airspeed and the root mean square values of the gust responses for various airspeeds. The results showed 

considerable improvements in both objectives when the optimized models were compared to baseline models. 

Another MOD was presented by (Haghighat, Martins, & Liu, 2012). Therein, the main design goal was to 

maximize the endurance of a high-altitude long endurance aircraft by tuning wing planform parameters (wing 

area and span-wise twist distribution), structural sizing (spar-wall thicknesses), and control gains (diagonal 

elements of the state weighting matrix of the LQR algorithm) concurrently. The results showed that the 

simultaneous design of the control system along with structure of the wing at the early stages of aircraft design 

improves the aircraft performance. 

 

In this paper, we go one step further and introduce a multidisciplinary and multi-objective optimization 

approach that integrates the design of the control surfaces’ sizes, active control system, and estimator for an 

aircraft’s wing having three control surfaces. Four objectives are considered: minimizing impacts of external 

gust loads, maximizing stability robustness, reducing control energy consumption, and minimizing the 

Frobenius norm of the estimator gains. A mathematical model of a flexible aircraft wing used for numerical 

simulations is introduced in the next sections. 

 

 

Mathematical Model of an Aircraft’s Wing with Multiple Control Surfaces 
 

Consider the flexible wing with three control surfaces shown in Figure 1. The matrix-differential equation 

governing the dynamic of the system is given by  

   2( ) ( ) ( ) ( ) ( )t t t t t    a a c g gMq C- VC q K - V K q F u F w&& &
 

  (1) 

The vector  1 4( ) ( ),..., ( )
T

t q t q tq represents the generalization coordinate, 1 3( ) ( ),..., ( )
T

t t t    u denotes the 

vector of the control surface deflection as labeled in the figure, Fc is the matrix describing the influence of the 

controls on the system dynamics, and Fg describes the influence of aerodynamic loads, wg(t), on the system 

behavior. The matrices M, Ca, C, Ka, and K are the structural inertia, aerodynamic damping, structural 

damping, aerodynamic stiffness, and structural stiffness matrices, respectively. The reader can refer to Appendix 

A or more details about the model and the numerical values (see Table A.1) used in the simulation. 

 
Figure 1. Flexible Aircraft Wing Model with Three Control Surfaces (Singh & McDonough, 2014) 

 

The bending deformation (transverse direction) z and rotation θ at a point (x, y) on the wing are related to the 

generalized coordinates and the wing’s dimensions by the following equations: 
2 3 2
1 2 3 4( ) ( ) ( ) ( ) ( ) ( ) ( )f fz t y q t y q t y x x q t y x x q t         (2) 
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2
3 4( ) ( ) ( )t yq t y q t      (3) 

where, xf  is the flexural axis location aft of leading edge. 

 

 

Optimal Full-State Feedback Control System 

 

The state-space model of the system described in Eq. (1) reads 

( ) ( ) ( ) ( ).t t t t  u g gx Ax B u B w&    (4) 

The output equation is given by 

( ) ( ).t t oy C x    (5) 

Where,  1 4 1 4) ( ),..., ( ), ( ),..., ( )
T

t q t q t q t q tx( & & is the state vector. The system matrices A, Bu, Bg, and Co read 

   

4 4 4 4
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  (6) 

 
  
  

4×3

u -1
c
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  (7) 

 
  
  

4×3

g -1
g

0
B

M F
 

  (8) 

 4 4 4o 4×C I 0    (9) 

Where, I and 0 denote the identity and zero matrices, respectively. It is evident from the system configuration 

that the system is completely controllable. Also, the system is completely observable. That is, with the on-board 

sensors’ distribution given in Eq. (9), the first four states can be measured directly and then used to estimate the 

last four states. A MIMO full-state feedback law for the state-space system given in Eq. (4) can be written as 

( ) ( ).t t  cu K x    (10) 

where,  is the state feedback gain matrix. Substituting Eq. (10) into Eq. (4), the closed-loop dynamics 

is given by 

 ( ) ( ) ( ).t t t  u c g gx A B K x B w&    (11) 

Taking the Laplace of Eq. (11), we obtain 

  ( ) ( ),s s s  u c g gI A B K X B W    (12) 

where, X(s) and Wg(s) are the Laplace transforms of x(t) and wg(t), respectively. Using this equation and Eq. 

(5), the transfer function matrix GTF(s) from the gust loads to the system’s outputs is provided by 

 
1( )

.
( )

s
s

s


  o u c g

g

Y
C I A B K B

W
 

  (13) 

Here, Y(s) denotes the Laplace transform of y(t). This transfer function matrix is very crucial in the design of 

the control system since one of the design requirements is to alleviate the impacts of extreme aerodynamic loads 

on the system performance. It is evident from this equation that by increasing Kc, the gust loads’ effects can be 

reduced. However, this conflicts with the requirement of minimizing the control energy needed to stabilize the 

system and suppress flutter. Also, the span-wise lengths (s1, s2, and s3) and chord width (Ec) labeled in Figure 1 

play very important rule in the ability of the system to reject gust loads since they decide the values of Bu and Bg 

as shown in the Appendix. This emphasises the important of handling the design in multi-objective and 

multidisciplinary settings.  

 

 

Linear- Quadratic Regulator (LQR) Design 
 

The state feedback gain matrix Kc can be either directly tuned if the stable ranges of its elements are known, or 

indirectly computed by solving the Algebraic Riccati Equation (ARE) which results in an LQR. The latter is 

very attractive since it does not require any stability analysis and the user only needs to adjust some weighting 
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factors and then numerically solve the ARE to obtain Kc. In this case, Kc minimizes the following performance 

index: 

  
0

.T TJ t t t t dt



  x ( )Qx( ) u ( )Ru( )                                      
  (14) 

Where Q = Q
T
 is a positive semidefinite matrix that penalizes the departure of system states from the 

equilibrium, and R = R
T
 is a positive definite matrix that penalizes the control input. Using Lagrange multiplier-

based optimization method, the optimal Kc is given by 

 1c uK R B P                                        (15) 

The matrix can be calculated by solving the following ARE: 

 0T T -1
u uA P+PA-Q-PB R B P                                        (16) 

 

It is evident from Eqs. (15) and (16) that Q and R are the design knobs that greatly impact the calculation of Kc 

and in turn the performance of the system under control. Thus, the most important step in the design of an 

optimal controller using LQR is the choice of Q and R matrices. Conventionally, these matrices are elected 

based on the designer’s experience and adjusted iteratively to obtain the desired performance. Arbitrary 

selection of Q and R will result in a certain system response which is not optimal in true sense (Tewari, 2002). 

Many efforts have been directed toward developing systematic methods for selecting the weighting matrices. 

For instance, Bryson presented an approach for choosing the starting values of Q and R matrices, but this 

method only suggests the initial values and later the coefficients are to be tuned iteratively for optimal 

performance (Bryson, 2018). Analytical approach of selecting the Q and R matrices for a second order crane 

system was developed by (Oral, Çetin, & Uyar, 2010). Another analytical method of calculating the Q and R 

matrices for a third order system represented in the control canonical form was proposed by (El Hajjaji & 

Ouladsine, 2001). Developing an analytical technique to find Q and R for high order systems such as the system 

at hand is very tedious if it is not possible because of the dimension of the system. Therefore, we suggest a 

numerical approach through using an optimization algorithm to tune these matrices such that the design goals 

are optimized simultaneously. 

 

The LQR does not only guarantee the system stability but also the stability margins. This feature is very 

valuable for high-order dynamic systems where finding the feasible regions of the control gains are very 

difficult. On the other side, LQR requires that you have a good model of the system, and all the states in the 

system available for feedback. If not all the states are available, an observer should be used to estimate the 

unavailable ones. As a result, stability margins may get arbitrarily small. To avoid this situation, the estimator 

dynamics should be faster than the closed-loop dynamics i.e., the estimator eigenvalues should not be closer to 

the imaginary axis than those of the regulator. This can be done free of cost since the estimator does not require 

an actual control input (Tewari, 2002). As a result, the estimator poles can be pushed further into the left-half 

plan without causing concern of large control effort. 

 

 

Luenberger Observer 
 

Practically speaking, only a subset of states is available for feedback when the control system is designed. A 

cost-effective approach to determine the states that are not directly measured is to design an observer, which is 

nothing but a computer algorithm that uses the system mathematical model, available measurements, and 

feedback control signals to provide an estimate of the unavailable states. Luenberger observer is one of the 

popular and traditional estimators that can be used for this end (Luenberger, 1964). The dynamics of the 

Luenberger observer of the state-space system given in Eq. (4) assuming Bgwg(t) is unknown reads 

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )t t t t t     ux Ax B u L y y&    (17) 

ˆ ˆ( ) ( ).t t oy C x    (18) 

The term ˆ( ) ( )t t  L y y injects the error between measurements x(t) and model predictions ˆ( ),tx scaled by a 

user-chosen observer gain vector 8 4L ¡ . Letting ˆ( ) ( ) ( )t t t e x x , the error dynamics is governed by the 

following equation 

 ( ) ( ) ( )t t oe A-LC e&                                        (19) 



International Journal on Engineering, Science and Technology (IJonEST) 

137 

By examining this equation, we notice that the estimation error system is asymptotically stable, e(t)→0, if we 

select L such that the eigenvalues of ( )oA-LC  have negative real parts. That is, we can assign the eigenvalues 

(i.e., speed) of the error system by selecting L appropriately. Furthermore, the selection of L comes free of cost 

since the estimator does not require any form of physical control effort. As a result, the eigenvalues of the 

estimator e can be placed to the left of the fastest mode of the closed-loop system, 
minc as follows 

 
min

(1:8)e cr                                          (20) 

where,    
min

minc real eig  u cA-B K and 2r   can be tuned to find the optimal trade-offs between the 

observer speed of response and noise amplifications, which are directly related to the values of L. It can be 

noticed that 
minc is scaled by (1:8)r to avoid placing the estimator poles at the same location since the pole 

placement can be badly conditioned if the designer picks out unrealistic pole locations (MathWork, 2020). The 

proposition in Eq. (20) is introduced in this paper to avoid such situation though other setups are also possible. 

Then, the MATLAB command “place” can be used to calculate L.  

 

 

Multi-Objective Optimization 
 

Multi-objective optimization problems (MOPs) are stated as follows: 

  min .
Dk
F k    (21) 

Where a design variable vector 
1,..., nk k   k must be found to minimize a vector      1 ,..., mf f   F k k k . The 

domain can in general be expressed by l inequality and q equality constraints: 

 

  (22) 

The solution of a MOP is known as the Pareto set and its image is called the Pareto front. Therefore, the concept 

of dominancy (Pareto, 1971) is used to define the optimal solutions. Such solutions are non-dominated to each 

other. Simply stated, there exists no other solutions in the entire search space which dominate any of these 

solutions. MOPs are solved by multi-objective optimization algorithms which can be classified as evolutionary-

based and gradient-based algorithms. The reader can refer to (Tian, Y., Cheng, R., Zhang, X., & Jin, Y., 2017) 

for a comprehensive survey of MOP algorithms.  

 

Control systems’ design problems are complicated and non-convex, therefore evolutionary algorithms are the 

methods of choice (Woźniak, 2010). They outperform classical direct and gradient-based methods which suffer 

from the following problems: 1) the convergence to an optimal solution depends on the initial solution supplied 

by the user, and 2) most algorithms tend to get stuck at a local or suboptimal solution when solving non-convex, 

and complex problems. On the other side, evolutionary algorithms are computationally expensive  (Hu, Huang, 

& Wang, 2003). However, the computational cost can be justified if a more accurate solution is desired, and the 

optimization is conducted offline. The most widely used multi-objective optimization algorithm is the NSGA-II  

(Sardahi, Y. and Boker, A., 2018). It yields a better Pareto front as compared to SPEA2 (strength Pareto 

evolutionary algorithm) and PESA-II (Pareto Envelope based Selection Algorithm). Therefore, in this paper, we 

use the NSGA-II to solve the multi-objective optimal control problem at hand. The reader can refer to (Sardahi, 

2016) for more details about the working principle of this algorithm. NSAG-II works well on two-objective and 

three-objective problems. For many objective optimization problems (with more than three objectives), large 

populations are used to enhance the searchability of the algorithm but at the expense of the computation time 

(Ishibuchi, 2009). A study on the effect of the size of the decision variable space on the performance of NSGA-

II and other evolutionary algorithms showed that NSGA-II converges to the true Pareto front on all benchmark 

problems when the number of design parameters is less than or equal to 128  (Durillo, Nebro, Coello, Luna, & 

Alba, 2008). In this work, the size of the objective space is 4 and that of decision variable space is 15. 

Therefore, NSGA-II is expected to perform well in solving the optimization problem at hand. 

 

 

Multi-objective and Multidisciplinary Optimal Design 
 

Three pieces of information are needed for any optimization problem. They are the tunable parameters, fitness 

functions, and constraints. The design parameter space k (see Eq. (21)) is given by 

1 8 1 3 1 2,..., , ,..., , , , ,cQ Q R R E r    k .   (23) 
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The parameters Q1,…,Q8, are the values on the main diagonal of Q, and R1,…,R3 are the elements on the main 

diagonal of R. These variables are numerically adjusted to optimally tune Kc. The span lengths and chord of the 

ailerons are also tuned by varying α1, α2, and Ec. Where α1 and α2 set the length of first ( 1 1s s )and second 

( 2 2s s ) aileron. Having the values of s1 and s2, the length of the third aileron can be simply calculated 

  3 1 2s s s s   . It is worth noting that by changing α1, α2, and Ec, the sizes of the control surfaces are 

accordingly tuned, which decide both the amount of control energy and the ability of the closed loop to reject 

external aerodynamic loads. The reader can inspect the elements of the control and gust loading influence 

matrices Fc and Fg given in Appendix A to see how α1, α2, and Ec enter these matrices. The variable r dictates 

the locations of the estimator’s poles relative to the further left pole of the closed-loop system, and in turn the 

speed of response of the observer. These design knobs were tuned to minimize the following design objectives 

 
max

min , ( ) , , .c FFD
j 


u c

k
GTF B K L    (24) 

The relative stability of the controlled system is expressed by
maxc ,where    

max
maxc real eig  u cA-B K  

represent the real parts of eigenvalues of the closed-loop dynamic matrix. Small values of 
maxc indicate better 

stability robustness of the controlled system. The fitness function ‖GTF(jω)‖∞ describe the disturbance rejection 

capability of the closed-loop system to gust loads. A general definition of ‖GTF(jω)‖∞ is given by 

 
,

( ) sup ( ) .

i f

j j
  

  


  

GTF GTF    (25) 

Where σ is the largest singular value among the transfer function elements. That is, the maximum value of 

‖GTF(jω)‖∞ is minimized. The values of ωi and ωf are set to 0 and 1000, respectively, as suggested by (Singh & 

McDonough, 2014) . For a controlled system to have a good disturbance rejection, we must have ‖GTF(jω)‖∞<< 

1. The third objective, ‖BuKc‖F, is the Frobenius norm of the control matrix given by 

8 8
2

1 1

.ijF
j i

m

 

 u cB K  
  (26) 

where mij are the elements of BuKc. Generally speaking, the minimization of this norm leads to minimization of 

the control energy, which is one of the design objectives in this work. The fourth fitness function ‖L‖F, is the 

Frobenius norm of the estimator gain matrix and it is defined by 

8 4
2

1 1

.ijF
j i

l

 

 L  
  (27) 

where lij are the elements of L. Small values of this cost function leads to slow estimator dynamics but less noise 

amplification, and vice versa.The MOP in Eq. (25) is solved by tuning the elements of k in Eq. (23) under the 

following constraints 

 

   

 

(28) 

 

Here, D denotes the feasible search space. The upper bounds on Qi, Rj are chosen so that the penalties on the 

departures of the states from their desired positions and control utilization is high. The upper and lower limits of 

α1 and α2 suggest that the fractional lengths of the three control surfaces range from 1% to 98% of the airfoil 

span length. In contrast to the work proposed by (Singh & McDonough, 2014) where α1 was constrained 

between 1% and 25% and the lengths of the second and third control surfaces were fixed, this wider ranges 

expand the domain of the search space in the direction of α1 and α2 and add another degree of freedom to the 

design space. The geometric constraint on the control surface chord fraction Ec is chosen according to the work 

presented in (Singh & McDonough, 2014). A relationship between the design objectives can be achieved by 

tuning the individual weights Qi, Rj, and the control surfaces’ widths and lengths. The design variable r was 

chosen between 2 and 10 to ensure the estimator is at least two times faster than the fastest closed-loop mode 

and at most 10 times faster. 

 

To solve this multi-optimization problem, NSGA-II is used. There is no specific guide on how to set up the 

number of populations and generations for this algorithm. However, according to the MATLAB documentation, 

the population size can be set in different ways and the default population size is 15 times the number of the 

design variables n. Also, the maximum number of generations should not be greater than 200n. In this study, the 
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population size and the number of iterations is set to 50n. The MOP is solved at V = 87.5m/s, which marks the 

beginning of flutter and open-loop’s instability. 
 

 

Results and Discussion 
 

The properties of the Pareto set and Pareto front; sensitive of the dominant poles of the open-loop system, 

closed-loop system, and estimator to the airspeed; and responses of the controlled, uncontrolled, and observer 

models at selected objective values are discussed here.  

 

The optimization problem at hand is 15*4. That is, 15 decision variables and 4 objectives. So, it is difficult to 

depict all the objectives in one graph. Instead, 2D projections from the 4D design space are produced as shown 

in Figures 2, 3, and 4. The color in these two figures is mapped to the value of the objective ‖BuKc‖F with red 

denotes the highest value, and dark blue denotes the lowest value. It is evident from these figures that there is a 

competing relationship among the design objectives. For instance, by inspecting the subplots (a) and (b) of 

Figure 2, we note that at the maximum stability robustness
max

31.0577c   ,‖BuKc‖F and ‖L‖F read 2.5633e+06 

and 9.6214e+07, respectively. While, at the minimum stability robustness
max

10.1686c   , ‖BuKc‖F and ‖L‖F read 

3.0799e+05 and 4.7418e+06, respectively. Another example can be found in Figure 3. We notice that at the best 

disturbance rejection ‖GTF(jω)‖∞= 0.0011, ‖BuKc‖F and ‖L‖F read 2.4639e+06 and 9.2596e+ 07, respectively. 

While, at the worst gust loads’ rejection ‖GTF(jω)‖∞= 0.0057, ‖BuKc‖F and ‖L‖F read 2.3481e + 04 and 5.6637e+ 

06, respectively. That is, better disturbance rejection and stability robustness can be achieved by high control 

energy and estimator gain. High estimator gains may lead to high measurement noise amplifications. A third 

example is shown in Figure 4 where there is a conflict between the objective of minimizing the control energy 

consumption and that of attenuating sensors’ noise amplification. Small values of ‖BuKc‖F and ‖L‖F are required 

to reduce the impact of measurement noise on the closed-loop performance as indicated by the dark blue region. 

On the other side, small energy levels mean bad aerodynamic load repudiation. As a result, the decision-maker 

should choose the solution that gives the best compromise between these objectives. 

 
 

Figure 2. Projections of the Pareto Front. (a) ‖BuKc‖F versus
maxc , (b) ‖L‖F versus

maxc . The color code represents 

the levels of ‖BuKc‖F with red denotes the highest value, and dark blue denotes the lowest value. 

 
Figure 3. Projections of the Pareto Front. (a) ‖BuKc‖F versus ‖GTF(jω)‖∞,  (b) ‖L‖F versus ‖GTF(jω)‖∞. The color 

code represents the levels of ‖BuKc‖F with red denotes the highest value, and dark blue denotes the lowest value. 
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Figure 4. A 2D Projection of the Pareto Front. ‖BuKc‖F versus ‖L‖F .The color code represents the levels of 

‖BuKc‖F with red denotes the highest value, and dark blue denotes the lowest value. 

 

 

Stability Robustness 
 

The profiles of the dominant open-loop pole
max
,o closed-loop pole

maxc , and estimator eigenvalue
maxe at the best 

and the worst stability robustness are shown in Figure 5, 6, and 7, respectively. Figure 5 shows the open-loop 

system is sensitive to the airspeed, V (m/s), and becomes more unstable when V increases. Figure 6 shows the 

profile of
maxc at different degrees of relative stability. As expected, the closed-loop system shows better relative 

stability at
max

31.0577c   than that at
max

10.1686c   . At
max

31.0577c   , the closed-loop system become 

unstable near V=238 m/s. For
max

10.1686c   , the flutter occurs at approximately V=218 m/s. In active 

aeroelastic control, flutter must be placed outside the flight envelope of an aircraft. Typically, a 15% flutter free 

margin or more is needed beyond the design envelope for both civil and military aircrafts (Carey & Buttrill, 

1996).  

 

According to the flight rules in the US, no person may operate an aircraft below 10,000 feet MSL (Mean Sea 

Level) at an indicated airspeed of more than 250 knots (128.611 m/s). Based on this, we notice that the flutter 

boundaries is extended to more than 69% or ((218-128.611)/128.611 * 100) % beyond the design speed 

envelope when
max

10.1686c   . Thus, a unique control gain can be implemented for the whole flight. Figure 7 

shows the profile of 
maxe at different degrees of estimator relative stability. The estimator shows better relative 

stability at 
max

6.5623 3e e    than that at
max

937.6681e  . Also, we notice that the estimator dynamics will 

always be stable regardless the change in the air stream velocity. This is expected since the dominate estimator 

pole is placed to the left of the closed-loop fastest eigenvalue.  

 

 

Time- Domain Response 
 

For the velocity, V=87.5 m/s (onset of flutter), the closed loop and estimator response is computed when they 

are excited by a discrete “1-cosine” gust loading (Haghighat, Martins, & Liu, 2012). It is clear that the responses 

at  
max

min c (see Figure 8), min(‖GTF(jω)‖∞) (see Figure 10), max(‖BuKc‖F) (see Figure 12), and max(‖L‖F) (see 

Figure 14) are the best. While those at  
max

max c  (shown in Figure 9), max(‖GTF(jω)‖∞) (shown in Figure 11) 

min(‖BuKc‖F) (shown in Figure 13), and min(‖L‖F) ( shown in Figure 15) are the worst. But in all cases, the 

closed-loop control system can suppress the flutter and stabilize the system and the estimator converges quickly. 

Also, the simulations show that the first four states (q1 to q2) always converge to their true values and their first 

time derivatives take less than 1 second to converge. These responses also confirm the conflicting nature of the 

design objectives. 
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Figure 5. Profile of the Open-loop Poles,

max
,o with Change in Airspeed 

 
Figure 6. Profile of the Close-loop Poles,

maxc , with Change in Airspeed. Green curve with * marker represents 

max
31.0577c   . Black curve with diamond marker is the profile of 

max
10.1686c   . 

 
Figure 7. Profile of the Observer Poles, 

maxe , with Change in Airspeed. Green curve with * marker represents 

max
6.5623 3e e    . Black curve with diamond marker is the profile of 

max
937.6681e   . 

 
Figure 8. The Response of Control Surfaces at V=88 m/sec (red solid line: closed-loop response and blue solid 

line: estimator response at  
max

min c . 
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Figure 9. The Response of Control Surfaces at V=88 m/sec (red solid line: closed-loop response and blue solid 

line: estimator response at  
max

max c . 

 
Figure 10. The Response of Control Surfaces at V=88 m/sec (red solid line: closed-loop response and blue solid 

line: estimator response at min(‖GTF(jω)‖∞). 

 
Figure 11. The Response of Control Surfaces at V=88 m/sec (red solid line: closed-loop response and blue solid 

line: estimator response at max(‖GTF(jω)‖∞). 

 
Figure 12. The Response of Control Surfaces at V=88 m/sec (red solid line: closed-loop response and blue solid 

line: estimator response at max(‖BuKc‖F). 
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Figure 13. The Response of Control Surfaces at V=88 m/sec (red solid line: closed-loop response and blue solid 

line: estimator response at min(‖BuKc‖F). 

 
Figure 14. The Response of Control Surfaces at V=88 m/sec (red solid line: closed-loop response and blue solid 

line: estimator response at max(‖L‖F). 

 
Figure 15. The Response of Control Surfaces at V=88 m/sec (red solid line: closed-loop response and blue solid 

line: estimator response at min(‖L‖F). 

 

 

Conclusion  
 

We have studied the multidisciplinary and multi-objective optimal design of a wing with three control surfaces. 

The optimization problem with 15 design parameters and 4 objective functions is solved by NSGA-II algorithm. 

The decision variable space consists of 3 parameters related to the span wise and chord lengths of the control 

surfaces, 11 setup gains related to the LQR penalty matrices, and one parameter to place the estimator poles to 

the left of those of the closed-loop system. The objective space contains four objectives: minimization of the 

controlled system response to gust loads, and maximization of the closed-loop system's stability robustness, 

minimization of the control energy utilization, and minimization of the Frobenius norm of the estimator gains. 

The optimal trade-off solutions in terms of the Pareto set and front are obtained. The Pareto set includes 

multiple design options from which the decision-maker can choose to implement. The Pareto front demonstrates 

competing relationship between the design objectives. The poles of the closed-loop and observer eigenvalues 

versus airspeed for different levels of relative stability show that a unique control gain can be designed for the 

entire flight envelope. 
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APPENDIX A 
 

According to (Singh & McDonough, 2014), the parameters and matrices for the system given in Eq. (1) are as 

follows: 
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Table A.1. Aeroelastic system parameters for the wing having three control surfaces 

Parameter Symbol  Value  Parameter Symbol Value 

Semi-span (m) s  6 Unsteady torsional velocity term M
&

 -1.2 

Chord (m) c 1 Eccentricity ratio e 0.15 

Mass per unit area ( 2/kg m ) m 10 Position of flexural axis 
fx  0.4c 

Air density ( 3/kg m ) 
  1.225 Flexural rigidity EI 3400 10  

2D lift curve slope 
wa  2  Torsional rigidity GJ 3200 10  

 

 


