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Mean squared error distributions, alternative estimators can substantially outperform the sample

Bias-Variance trade-off variance in terms of MSE. By using variance estimation as a framework,
ChatGPT instructors can effectively introduce students to the bias-variance trade-off, a
foundational concept in statistical estimation and model selection. To support
classroom implementation, we provide a series of R codes for the simulation-
based visualizations that foster students’ intuition about the interaction between

bias and variance.

Introduction

The sample variance, alongside the sample mean, is among the most fundamental statistics introduced in both
introductory and intermediate-level statistics courses. Given its foundational role in data analysis, the computation
of sample variance is typically introduced early in the curriculum. The definitions of the population variance o2

and sample variance s are given as follows:

1 1
%= m >(x - u)z and s* = — Y(x; —x)?
where u represents the population mean, and N and n denote the population and sample sizes, respectively. With

formula in (1), typically, the following rules are given to students:

To calculate variance from a population, we divide the sum of squared deviations by N, but when calculating

variance from a sample, we have to divide it by n—1 rather than n.
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The shift in the denominator of the sample variance often perplexes students. While the population mean and
variance use N, and the sample mean uses n, the sample variance uniquely involves dividing by n — 1.
Understandably, students are left questioning this inconsistency. Faced with this conceptual tension, students—
like Hamlet in Shakespeare’s tragedy - might exclaim:
“n—1 orn, that is the question!”

This question is not only natural but also pedagogically important. From a student’s perspective, dividing by n—1
rather than n may appear counterintuitive since there are n squared deviations. Examples of conventional
instructions commonly given to students to address this confusion include the following:

Case 1: We divide by n — 1, rather than dividing by n, when computing a sample’s variance; there’s some

mathematical nuance here, but the end result is that doing this makes this statistic slightly more reliable

and useful (Diez et al. 2019, p. 47).

In general, the term “reliable” is used to describe an estimator that does not fluctuate significantly depending on
the sample when estimating a population parameter. In many cases, using n can actually result in more stable
(i.e., less variable) estimates than using n — 1. The subsequent sections will delve into this issue.
Case 2: The sample variance underestimates the population variance when the denominator in the sample
formula for variance is n. However, the sample variance does not underestimate the population variance
if the denominator in the sample formula for variance is n — 1 (Mann 2010, p. 94).
This instruction suggests that using n — lis more desirable than using n, as the latter tends to underestimate the
population variance. However, underestimation does not necessarily imply lower accuracy. In many cases, an
underestimated estimator may actually be closer to the true population variance than one that is not. This point

will be examined in more detail in the upcoming sections, too.

The confusion caused by the denominator of the sample variance often arises from the ambiguous phrasings
between “calculating variance from a sample” and “finding a sample variance”. Thus, before addressing the
question directly, it is useful to clarify what is truly meant by “calculating variance from a sample.” This
clarification is essential because the conventional instruction can misleadingly imply that any method not using
n — 1 is incorrect. In reality, the so-called sample variance is merely one of several valid estimators of the
population variance. Some educators and students mistakenly regard the use of n instead of n—1 as a
computational error rather than a methodological alternative. However, using n leads not to a “wrong” estimator,

but rather to a “different one,” each with its own statistical desirable properties.

This article aims to investigate the enduring presence of the “Hamlet’s question” in statistics education and to
identify the pedagogical misconceptions that sustain it. These misconceptions are closely tied to the criteria used
for evaluating estimators. In particular, we argue that undergraduate statistics courses should go beyond the
conventional emphasis on unbiasedness and incorporate the concept of Mean Squared Error (MSE) as a more

comprehensive metric for assessing estimator performance (Levy 2006).

To illustrate this point, we investigate the form of variance estimators that minimize the mean squared error when

data are drawn from symmetric distributions. In particular, we examine estimators based on the sum of squared
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deviations with a denominator of n + r, where r > —1, highlighting that the issue extends beyond the common
debate of using n — 1 versus n (Rosenthal 2015). We then extend the discussion to asymmetric distributions,
proposing alternative variance estimators that deviate substantially from those optimal under symmetry, and
compare their MSEs by analyzing both bias and variance components. Ultimately, integrating these discussions
into instruction provides students with a broader understanding of estimation and presents a valuable opportunity
to introduce the concept of the bias-variance trade-off, a fundamental principle in parameter estimation and model

selection within machine learning (Murphy, 2012).

Sample Variance and Its Denominator

When we compute a variance from sample data, we are not calculating the population variance itself but instead
estimating it. Crucially, estimation is not a uniquely defined procedure. While the population variance is a fixed,
unique, and unknown quantity, there are multiple valid ways to estimate it based on observed data. The sample

variance is merely one among many possible estimators.

Analysts select an estimator based on its statistical properties and the goals of their analysis. No single estimator
is universally best in all scenarios; each has its advantages and disadvantages. Although the true population
parameter is fixed, the method of estimation depends on context, assumptions, and desired properties such as
unbiasedness or efficiency (Casella & Berger 2002). The applicability of this idea extends beyond variance
estimation and can be equally relevant in the estimation of other parameters. For example, although the sample
mean is often used to estimate the population mean, it is not always the optimal choice. When sampling from a
skewed distribution such as the lognormal, the sample mean can be highly variable, even with large sample sizes.

In such cases, alternative estimators may offer more stable performance (Shen et al. 2006, Longford 2009).

Understanding that estimation is not a one-size-fits-all process makes it easier for students to appreciate why the
denominator in the sample variance formula is n — 1. This choice is based on one of the desirable statistical
properties: unbiasedness. It is equally important to address the source of confusion embedded in the terminology
“sample variance.” While “sample variance” is commonly defined using n — 1 in the denominator, it is only one
possible estimator of the population variance. That is, it is “correct” to divide by n — 1 when one is explicitly
computing the sample variance as defined, and this will guarantee the unbiasedness of the sample variance.
However, this does not imply that dividing by n is incorrect. In fact, using n instead yields another legitimate
estimator known as the method of moments estimator (MME), which may be preferable under specific evaluation

criteria.

Mean Squared Error and the Bias-Variance Trade-off

The sample variance (using n—1 for the denominator) possesses the desirable property of unbiasedness. possesses
the desirable property of unbiasedness. At this point, it is vital to investigate the key differences between variance
estimators that use n — 1 and those that use n as the denominator. The central issue lies in understanding the trade-

off between bias and variance, and more broadly, in evaluating estimators through the lens of mean squared error
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(MSE). The MSE of an estimator is defined as the expected squared deviation from the true parameter value:
MSE(8) = E[(6 — 8)°| = Bias?(9) + Var(),

where 6 is the true parameter and 8 is an estimator for 8. The sample variance using n — 1 is an unbiased estimator
of the population variance regardless of the population distribution. As a result, its MSE is equal to its variance.
This property makes it particularly appealing in classical statistical inference, as unbiasedness has long been a
dominant criterion (Mood et al. 1974). However, in contemporary statistical and machine learning practices,
MSE has become a more influential criterion. Slight bias may be acceptable—or even preferred—if it significantly
reduces the variance of an estimator, thereby lowering its overall MSE (Kubokawa & Srivastava 2002, Hara
2007). This shift in preference is particularly evident in the machine learning context, where algorithms are often

chosen based on their predictive performance, not necessarily on unbiasedness (Hastie et al. 2009).

To return to our example, when data are sampled from a normal distribution, the variance estimator obtained by
dividing by n is biased, but it has a smaller MSE compared to the unbiased sample variance. Under an MSE-based
evaluation, this biased estimator may thus be more desirable. Rather than teaching students to favor the sample
variance solely due to its unbiasedness, educators should encourage a broader perspective—one that incorporates
multiple criteria for evaluating estimators, especially MSE. By engaging students in MSE-based comparisons,
instructors can deepen students’ understanding of the different goals of estimation and foster more critical
thinking. Furthermore, this pedagogical approach provides a natural transition to the bias-variance trade-off, a

central concept in both advanced statistical theory and data science.

The bias-variance trade-off plays a foundational role in parameter estimation and model selection. For instance,
ordinary least squares (OLS) estimators in regression models are unbiased and possess the minimum variance
among all linear unbiased estimators, irrespective of the underlying distribution of the error term (Gauss-Markov
theorem, Stigler 1981). However, ridge regression introduces bias in order to reduce variance, often resulting in
a lower mean squared error (Lakshmi & Sajesh 2025). This trade-off is also critical in model selection within
machine learning, where increasing model complexity typically decreases bias but increases variance. Effective
model selection hinges on striking an optimal balance to minimize MSE. Introducing this framework at the

intermediate level equips students to connect foundational statistical concepts with modern data science practices.
MSE of the Sample Variance and S,Zi(n)

Suppose we have a random sample Xy, ..., X»n, from a population with mean u and variance

02, Define S§,) as

Sam = ﬁ S(% %)
where d(n) is any function of n. The sample variance can be regarded as a special case of Sj(n) with d(n) =n -
1. As stated earlier, the sample variance S2_; is an unbiased estimator for o2 If the sample is obtained from a
normal population, S2 is biased, but it is both a method of moments estimator (MME) and a maximum likelihood

estimator (MLE) for a2, Furthermore, SZ2, ; is the estimator for o that has the smallest MSE for the normal sample

(Lehmann 1983).
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One of the principal advantages of the sample variance is that it serves as an unbiased estimator of the population
variance, irrespective of the underlying population distribution, satisfying E(S2_,) = ¢2. Furthermore, when the
underlying distribution is normal, the sample variance is the uniformly minimum variance unbiased estimator
(UMVUE) for o2 (Casella & Berger 2002), implying that it achieves the lowest variance among all unbiased
estimators. Due to these favorable properties, the sample variance is widely employed across numerous fields as
the standard method for variance estimation. Nonetheless, from an MSE perspective, we can identify many biased
estimators that outperform the sample variance. Note that since the sample variance is unbiased, its MSE coincides

with its variance, that is, MSE(S2_,) = Var(S2_,). The variance of S2_; is given by,
4

) o n—3
vrsi.0 =2 (+-222)

where k = E(X — u)*/o* represents the kurtosis (Cho & Cho 2009). Kurtosis, k, is a measure that describes the
shape of a probability distribution’s tails in relation to its overall shape. It helps assess whether the data are heavy-
tailed or light-tailed, which impacts the likelihood of outliers (Balanda & MacGillivray, 1988). As the heaviness
of the tails increases, the value of k also increases. For example, the normal distribution, which has the light tails,
has k = 3, whereas the Laplace distribution, with heavier tails that decay more slowly, has k¥ = 6. Using (2), we

can find the variance and the squared bias of Sﬁ(n) as

2 N n—-1_, )_(n—l)z‘a_‘*( _n—3)
Var(Sm) = Var(—d(n SZ_, R ron e
2
oe2( Q2 _ g2 n-1., _ 2)= 4(11—1_ )
Bias?(Siqy) = E ( ORI RO

Therefore, the MSE of S24(n) is obtained by adding (3) and (4),
m-1D?K-3)+nn+1D)(n-1) 2n-1)
MSE(S3,,) = o* -
S (Sd(n)) o < n - d?(n) d(n)

and it is minimized at

3—k
dn)=n+x—-2+

n

From (6), we can see that the optimal d(n) is a linear function of x with a slope close to 1. Since the theoretical
minimum value of k is 1, it follows that d(n) > n—1. Therefore, unless the underlying distribution has a k value

close to 1, the sample variance with denominator n — 1 rarely achieves the minimum mean squared error.
MSE of S‘Zi(n) for Symmetric Distributions

For a normal distribution with kurtosis x = 3, the expression in Equation (6) indicates that the mean squared error
(MSE) of the estimator Sj(n) is minimized when d(n) = n + 1. In other words, S2,; outperforms the unbiased
sample variance S2_, in terms of MSE when estimating ¢ from normally distributed data. Figure 1 illustrates the
squared bias, variance, and MSE of S é(n) for d(n)=n—1,n, and n + 1 under the normal distribution. While Sn.
exhibits the largest squared bias (top-left panel), the corresponding reduction in variance (top-right panel)
significantly outweighs the increase in bias, resulting in the smallest overall MSE (bottom-left panel). The bottom-
right panel presents the MSE ratio of S2 and SZ,  relative to the sample variance S2_;. Notably, both estimators

uniformly outperform the traditional unbiased sample variance across various sample sizes.
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These results provide practical guidance for selecting an estimator for 2 when working with data from a normal
distribution. If unbiasedness is the primary concern, S2_, remains the appropriate choice. If one seeks an estimator
based on the method of moments or the maximum likelihood principle, S?2 is preferred. However, if minimizing

MSE is the objective, then S2, ; is the optimal estimator.

Squared Bias Variance
0.5 === d(n)=n 0.5 === d(n)=n
0.4 === d(n)=n-1 0.4 = d(n)=n-1
0.3 d(n)=n+1 0.3 d(n)=n+1
0.2
0.2
0.0 —e— 0.1
10 20 30 10 20 30
Sample Size (n) Sample Size (n)
MSE MSE Ratio (vs Sample Variance)
0.5 == d(n)=n 1.0
== d(n)=n-1
0.4 — ii%
0.3 (ppe = d(n)=n
0.2 = — d(n)=n-1
0.1 - 0.7 d(n)=n+1
10 20 30 10 20 30
Sample Size (n) Sample Size (n)

Figure 1. Squared Bias, Variance, and MSE of S2_;, S2, and S2, ; for Normal Samples with 6% = 1.

Relation between Kurtosis and Optimal d(n)

Because the MSE of Sg(n) depends on the kurtosis x of the underlying distribution, the optimal value of d(n) that
minimizes MSE is also a function of k. As shown in Equation (6), d(n) increases linearly with x with a slope of
approximately (n — 1)/n = 1 for moderate sample sizes. Consequently, as k increases by one unit, the optimal d(n)

increases by approximately one unit as well.

Figure 2 depicts the relationship between k and the optimal d(n) for several symmetric continuous distributions
that are commonly included in statistics curricula (In the graph, GND stands for the generalized normal
distribution). The theoretical lower bound of k is 1, attained by the Bernoulli distribution with a success probability
of 0.5 in the discrete case. For continuous distributions, highly U-shaped forms, such as limq—,ot+ Beta(a,a) satisfy
Kk — 17 (Johnson et al. 1995). Distributions with 1 < k < 1.5, such as the Beta(a,) distribution with 0 < a <0.5,
exhibit high density near their boundaries and have finite support. For these highly U-shaped distributions, the
mean squared error (MSE) of the variance estimator is minimized when d(n) = n—1. In contrast, for symmetric
distributions with 1.5 < k <2.4 — including the arcsine, uniform, and triangular distributions — the sample variance
with d(n) =n — 1 yields a higher MSE than Sj(n) with d(n) = n. For distributions with 2.4 <k <3.5, such as the
normal and generalized normal distributions with a scale parameter around 2, the MSE is minimized when d(n)
= n+1. The Laplace distribution, also known as the double exponential distribution, has x = 6, and the MSE of

Sé(n) is minimized at d(n) =n + 4 (Balanda & MacGillivray 1988).
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Kurtosis

________ 4
A f

optimal d(n)
0

O'Beta(0+,0+)Arcslne Uniform Triangularormal GND  Logistic t(df=7) Laplace

Figure 2. Kurtosis Values along with the Corresponding Optimal d(n) values that Minimize the MSE.
Hllustrating the bias-variance trade-off

Figure 3 shows how the squared bias, variance, and MSE of Sé(n) change as a function of d(n) for a fixed sample
size of n=10. As d(n) increases, variance consistently decreases, while squared bias increases. The bias becomes
zero when d(n) =n — 1. This bias-variance trade-off yields a convex MSE curve, resulting in a unique minimum
MSE value. As shown in (4), the squared bias component does not depend on the kurtosis and therefore increases
uniformly as d(n) increases across all three distributions. In contrast, the variance component, illustrated in (3),
is larger for distributions with higher kurtosis and decreases much more rapidly with respect to d(n) than the
squared bias component. Figure 3 also displays, when restricted to integer values of d(n), the optimal value
minimizing the mean squared error (MSE) depends on the kurtosis of each distribution: for the uniform
distribution, d(n) = n = 10; for the normal distribution, d(n) =n + 1 = 11; and for the logistic distribution, d(n) =
n+2=12.
Kurtosis = 1.8 Kurtosis = 3.0 Kurtosis = 4.2

Uniform distribution Normal distribution Logistic distribution

0.4 0.4 0.4

Min MSE at d(n)= 12.1

0.3 0.3 0.3

Min MSE at d(n)= 11.0

0.2 0.2 02
Min MSE at d(n)= 9.9
0.1 0.1 0.1
0.0 0.0 0.0
8 10 12 14 16 8 10 12 14 16 8 10 12 14 16
d(n) d(n) d(n)

- MSE — Squared Bias — Variance

Figure 3. Bias-variance trade-off for the Variance Estimator Sj(n)
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These findings offer compelling pedagogical value for illustrating trade-offs in estimator performance. This
analysis highlights the fundamental trade-off between bias and variance in statistical estimation. It serves as an
accessible and powerful educational example, helping students move beyond the traditional focus on unbiasedness

and develop a deeper understanding of estimator or model selection based on MSE and distributional properties.

Alternative Variance Estimation for Skewed Distribution using a Gamma Distribution

Gamma Distribution

The gamma distribution is one of the most commonly used distributions for modeling positively skewed data. Its
probability density function (pdf), parameterized by shape and scale parameters (a and f3), is highly flexible and
can range from strongly skewed to nearly symmetric, depending on the values of these parameters (Evans et al.
2000). The exponential distribution is a special case of the gamma distribution with a = 1, while the chi-squared
distribution with r degrees of freedom is equivalent to a gamma distribution with @ =1/2 and § =2. The pdf of a

gamma distribution is given by

a-1

_x
e B, x>0,

where I'(+) denotes the gamma function. The mean and variance of the gamma distribution are E(X) = aff and

Var(X) = afs?, respectively.

When dealing with skewed data, fitting a gamma distribution to the observed sample and estimating the variance
using the fitted parameters yields an estimator with significantly lower MSE than the conventional form of
variance estimator S;(n). Maximum likelihood estimation (MLE) offers a robust approach for parameter

estimation, although closed-form solutions for the gamma parameters do not exist and typically require numerical
optimization. To provide an accessible alternative for undergraduate instruction, we adopt a practical
approximation using closed-form solutions derived from generalized gamma likelihoods, thereby avoiding
iterative methods such as Newton-Raphson.

The gamma shape and scale parameters can be estimated using the following approximations (Ye & Chen 2017,
Louzada et al. 2019):

~ ani d 5 1 ( | | )
‘= ny.x; Inx; —Yx; ¥ Inx; and g = ) nyx; Inx; — Yx; Y Inx;

The resulting estimator for the variance is given by
52 =af = Ex (Cx; Inx; — 3 Inx;)

Unlike Sj(n), it does not depend on the squared deviation, but the averages of x;’s, In x;’s, and x; In x;’s. Although
this estimator is biased, its variance is substantially smaller than that of the sample variance, especially for small
samples. While bias correction is possible, the uncorrected form still shows outstanding performance and serves
as a valuable pedagogical tool to illustrate the bias-variance trade-off in estimation. Moreover, estimating the
parameters « and 8 of the gamma distribution requires only simple summary statistics such as Y xi, Y Inxi, and
> xiInx;, making it feasible to implement even in an introductory statistics course. Although the probability density
function of the gamma distribution may initially appear challenging to students, this need not be a barrier. Just as

we can teach analyses involving the normal distribution without delving deeply into its pdf in introductory courses,
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students do not need a detailed understanding of the gamma pdf to effectively use the distribution for modeling
skewed data. It is generally sufficient for students to know which parameters are involved and how to estimate

them.

Simulation study for MSE comparison

To validate the performance of the proposed estimator empirically, we conducted a simulation study as follows:
o Population Distributions: Exponential, Gamma, and Lognormal distributions
o Sample Sizes: n = 15, 30, 45, 60, 75, 100.

o Parameter setting

Distribution Parameters True Variance: ¢° Kurtosis: k Optimal d(n)
Exponential 0=3 6*=9 9 n+7
Gamma a=2,8=5 af?=50 6 n+4
Lognormal p=1,v=0575 (e¥’ —1)e2* =403 12 n+10

o Variance Estimators for Comparison:
(1) SZ_,: Sample variance (Unbiased).
(2) S2: Method-of-moments variance estimator.
(3) S%pi: Variance estimator using the optimal d(n).
(4) &2 Proposed gamma modeling-based variance estimator defined in (7).
o Number of Replications: M = 3000.
o Simulation Procedure:
(1) Generate a random sample {x1,...,xx} from the specified distribution.
(2) Compute S2_;, S2, S%opt , and d2.
(3) Repeat steps (1)—(2) for M replications.
(4) Estimate the MSE of $3(,): MSE(S2()) = = %(S3(n — %)’
(5) Estimate the MSE, squared bias, and variance of 6%
MSE(6?) = - %(67 — 022,
Bias?(6?) = (iz&f - 02)2, and
Var?(%) = MSE(6?%) — Bias?(8?),

where S, j(n),i and d:*are the estimates obtained in the i-th iteration.

Figure 4 shows the results for the exponential distribution with a scale parameter 8 = 3, which is highly skewed
with kurtosis 9. The optimal choice of d(n) for Sj(n) is n + 7 in this setting. The middle panel represents that
although S%.17 achieves slightly better MSE than the proposed estimator at n = 15, its advantage diminishes with
increasing sample size. The proposed estimator, in contrast, maintains a consistent reduction in MSE—
approximately 25%—across all sample sizes. From the right panel, we can see that the proposed variance

estimator’s MSE is determined mainly by the variance, as it has almost no bias, implying that it is nearly unbiased.
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MSE Ratio
(relative to the sample variance)

Distribution of Data
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Figure 4. MSE Comparison of Variance Estimators under the Exponential Distribution

The results for the Gamma(2,5) distribution in Figure 5 exhibit a pattern similar to that of the exponential
distribution shown in Figure 4. The estimator shows virtually no bias, with the variance comprising the dominant
component of the MSE. Given that the Gamma(2,5) distribution has a kurtosis of 6, the optimal d(n) is n + 4. The

MSEs of the proposed estimator and S2,, are nearly indistinguishable for small sample sizes. However, as the

sample size increases, the proposed estimator demonstrates more stable and substantial reductions in MSE.
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Figure 5. MSE Comparison of Variance Estimators under the Gamma and Lognormal Distributions
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Figure 5 also presents the MSE results under a lognormal distribution, which has higher skewness than the gamma
distribution. Unlike the gamma distribution, the lognormal distribution exhibits a fundamentally different form of
skewness. In particular, the lognormal distribution is widely used for modeling highly skewed data with extreme
outliers, such as income distributions (Darkwah et al. 2016, Okamoto 2022). The kurtosis of the lognormal
distribution depends solely on the scale parameter (v) and is highly sensitive to its value. For example, with v =
0.575, as used in our simulation setting, the kurtosis is 12, but it increases drastically to 114 when v = 1. Due to
this sensitivity, even the sample mean, which is typically considered a reliable estimator, performs poorly under

such distributions.

As shown in the bottom-center plot of Figure 5, the proposed variance estimator, derived by approximating the
distribution with a gamma distribution, achieves a 30—40% reduction in MSE compared to the sample variance.
Moreover, it significantly outperforms the estimator based on the optimal d(n) =n + 10. Although the proposed
estimator exhibits greater bias than in the gamma distribution case, the reduction in variance more than offsets the
increase in bias, resulting in a notably lower overall MSE. This demonstrates the method’s robustness even for

distributions with heavy tails, such as those common in economics and finance.
Discussion and Conclusion

The debate over using n—1 or n as the denominator in the estimation of population variance is not merely a matter
of determining which is correct or incorrect. Teaching students that only one option is right risks distorting their
understanding of one of the most important concepts in estimation: the diversity of estimators. We argue that this
issue should be addressed more comprehensively in statistics education by exploring estimator properties such as

bias, variance, and mean squared error, as well as the principles behind choosing an estimator.

In many cases, estimators of population variance take the form S, j(n). When d(n) =n—1, we obtain the traditional
sample variance, which is an unbiased estimator but has relatively high MSE. The value of d(n) that minimizes
MSE depends on the kurtosis of the population distribution. If the sample size is not too small, the optimal value
is approximately d(n) = n + k — 2, where k denotes kurtosis. Therefore, if minimizing MSE is the primary goal,
it is reasonable to choose d(n) based on the kurtosis of the underlying population. When the population
distribution is unknown, using the sample kurtosis to select d(n) can be a practical alternative. While estimators
of the form Sg(n) perform well for symmetric distributions, they often exhibit poor performance for skewed
distributions due to their sensitivity to outliers. In such cases, fitting a gamma distribution to estimate the variance
may provide a more efficient alternative in terms of MSE and, in some situations, even yield an approximately

unbiased estimator.

Both S, j(n)—based and gamma-based variance estimators provide an excellent and intuitive framework for teaching

foundational statistical concepts, including the diversity of estimators and the bias-variance trade-off. These tools
enable students to visually explore how bias and variance vary with sample size and kurtosis and to understand
how optimal MSE can be achieved. Ultimately, this serves as a powerful opportunity for students to learn how to

choose among multiple estimators based on appropriate criteria. To support such instruction, we provide an
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Appendix, including R codes, for hands-on simulation studies using normal and gamma distributions to explore
the bias—variance trade-off. These simulations offer students a concrete, experiential understanding of parameter
estimation from data. Since the bias-variance trade-off is a recurring concept in advanced data analysis, moving
beyond the rigid convention of always using the sample variance can help students cultivate a deeper, more

flexible understanding of statistical reasoning—an essential mindset in modern data science.

Lastly, as a related experiment, we asked ChatGPT the following question:
“Suppose we have a sample from a normal distribution with unknown mean and variance. What is the
way to get the variance estimator with the smallest MSE?”
ChatGPT compared only S2_;with S? and concluded that S?_, is unbiased but S? has a smaller MSE. When we
followed up with a question,
“What about using n + 1 for a denominator?”’
ChatGPT responded that
“Using n + 1 as the denominator is uncommon and does not yield desirable statistical properties.”
It continued, saying that n + 1 leads to a greater underestimation of variance than n and worsens both bias and
MSE. However, we know that the answer given by ChatGPT is totally incorrect. As shown in Section 3, with a
normal sample, although the variance estimator using n+1 has a larger bias than the one using n, it ultimately
yields a smaller MSE due to a greater reduction in variance. So, we proposed an alternative perspective:
“I think using n + 1 produces a smaller MSE than using n.”
After carefully re-evaluating the bias, variance, and MSE, ChatGPT ultimately agreed, stating:
“You are correct: for certain sample sizes, especially small to moderate n, using n+1 can produce an
estimator with lower MSE than using n.”
Nonetheless, even this response is not entirely accurate. As demonstrated in Section 3, under the normal
distribution, S2,; yields uniformly smaller MSE than S?2 regardless of the sample size. The detailed conversation

with ChatGPT is provided in the Appendix.

While we expect ChatGPT’s responses to improve over time, this example highlights that its current answers may
still be inaccurate. This is likely not limited to this specific topic but may extend to similar statistical estimation
problems. If students rely solely on ChatGPT for answers to such questions, there is a risk they may accept
incorrect information as fact. Therefore, instructors should seize the opportunity to thoroughly address these topics
in class, including a discussion of the limitations of current Al tools. Doing so not only ensures accurate
knowledge transfer but also fosters in students a critical and creative approach to using Al in learning, rather than
following it blindly. We believe this balanced approach is vital for empowering students in the era of Al-driven

statistical analysis and data science education.
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Appendix.

Simulation Studies

Bias-variance Trade-off with Sﬁ[n}

Setup Parameters

# Inpul Faromelers
n <= 10
kurtesis <- 3

# Print FParametsr

cat(
paste("Kurtesis: " kurtesia),
paste("\nSemple size:",n))}

wf Eurtosis: 3
#h Sample size: 10

Function to generate data

generate_data <- function({kurtesia, m) {
dn<- geq(n-2, ntkurtosis+d, length.out = 300)

# Sgquared Bias

BiasSq <- {({n-1}/dn-1)"2

¥ Varidnce

Var <- {(n-1)"2}/(n+*dn"2)+ (kortosis-{n-3)/(n-1})

¥ MSE

M3E<-({{n-1} 2+ (kurtogia=-3)+n+ (n+1)=(n-1))/(n*dn-2}-2=(n-1) /dn+1

#Bias <= ((r=1)/2-1)"2
#ar <= (A1) (nez " 2)%(n~-1)+ (kurtosis-3)+3"n
#MSE <= (m-1)/(nez " 2) % (R-1) s (kurtosiz=-3) ne (m+l) -2 (n-1) fz+1

data. frama(
dn = dn,
Bims3g = BiasSq,
Var = Var,
MSE = MSE,
kurtogis = as.factor{kurtoeis)
)
¥

¥ Crealte datazal
df <- bind_rowe (lapply(kurtesis, generate_data, n = n}) %%

pivet_longer{cole = c(M3E, BiaeB8q, Var), namea_to = "type”, values_to = "y*)

¥_limita <- range(dfSy)
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Make a graph for given Kurtosis

# Define titles
title_text <-paste("Biass-variance trade-off
\nXurtosis«" kurtosis,",", " Sample size=",n, sep="")

min_point <- df %>% filter(type == "MSE") ¥>Y slice(which.nin(y))

ggplot(def, aea(x = dn, y = y)) +
geom_line(aes(color = type), linewidth = 1) +
geom _point{data « min_point, aes(x =« dn, y =« y),
color = "red", size = 2, inherit.aes = FALSE) +
geom_text(data = min_point,
aes(x = dn ~ 1.5, y =y + 0.04,
label = sprintf("MNin MSE at d(n)= %.11%, dn)},
hjust = 0, vjust = ~-0.5, size = 3, color = "red", inherit.aes = FALSE) +
scale_color manual(
name « "
valueg = c¢("BiaeSq" = "darkgreen" "Var® = *blue”,"MSE" = "red"),
labels = ¢("Squared Bias" K "MSE","Variance")
) +
labs(title =« title_text, dn = "d(n)", y = "") «
ylin(y_limits) +
theme ninimal() «
thene(legend.position = "bottom",
plot.title = element text(size = 13, face =« "bold"),
legend.text = element_text(size = 13, face = "bold"),
axis.title.x = element text(size = 11, face =« "bold"),
axis.title.y = element_text(size = 11, face = "bold")

)
Blas-variance trade-off

Kurtosis=3, Sample size=10
03

Min MSE at d{n)=11.0

0.2

0.1

0.0

10.0 125 15.0
dn

- Squared Bias — MSE — Variance
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Simulation for variance estiamtor (Normal)

Setup Parameters and Initlalize contalners

i <= 5 # zcale paramefer
signa <- 4 ¥ zhape parameler
| <= 1000 #& the number of repeatition

nwee <- c(15, 30, 45, 60, 75, 100) # szaecple siszes
nlen <- leagth(nwvec)

vartrues <= pigma™2 # Ltrue voariance
kurtosia <= 3 # Kurtosis of Gamms distribulion
optimalr <= max(-1,round (kurtogis=-2)} # aptimal din)

gample_gize <- nvec

# Initfalize

meel <- meeld <- maed <- numeric{nlen)

varl <- var? <- var3 <- numeric{nlen)

bigl <- bie2 <- big3d <- numeric{nlen)

all_warhatl «<- all _warhat? <- all_wvarhat3 <- wvector({"lizt", nlen)

Simulation

for (i in 1:nlen) {
n <- nvee[i]
varhatl <- varhat2 <- varhat3 <- nomeric(M)

for (4§ im 1:M} {
x <= rnorm(n, mu, =igma) # generate random nuwbers
optdn <- max{n-1,n+kortosaie-23) # optimal din}

varhat1[j] <- war(x) # sample wvariance
varhat2[j] <- (n-1)/n =var(x) # mathod of moment
varhat3[j] <- (n-1)/eptdnsvar(x) & oplimal

}

# Store aach full vector

all_varhati[[i]] <- wvarhatl
all_varhat2[[i]] <- warhat2
all_varhat3[[i]] <- warhat3

# Compule performance melrics

meel[i] <- mean({varhatl-vartrue) "2}
meed[i] <- mean({varhat2-vartruoe) "2}
mead[i] <- mean({varhat3-vartrue) 2)

varl[i] <- war{varhatl}
varda[i] <- war(varhat2)
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var3[i] <- var(varhat3)

biel[i] <- (mean(varhati)-vartrue) 2

bie2[i] <- (mean(varhat2)-vartrue) 2

bie3[i] <- (mean(varhat3)-vartrue) 2
}

bias_addition « (bie3)/mzel
mee_reduction =« (mee3-meel) /msel
variance_reduction « mee_reduction-bias_addition

1. Normal PDF Plot

xv <~ geq(mu-3+sigma mu+r3+signa, 0.1) # z-azis
x_data <- rnorm(n, mu, eigma) # Simulated Normal data

# Theoretical density curve
xv <~ seq(mu-3+sigma, mu+r3+aigna, 0.1)
df pdf <- data.frame(x = xv, y = dnorm(xv, mu, sigma))

# Plot: histogram with density after_stat(density)
pl <- ggplot(data.frame(x = x_data), aes(x = x)) +
geom_histogran(aee(y =« after_stat(density)), bins = 40,
£i11 = "lightblue", color = "white", alpha = 0.8) +
geom_line(dats = df_pdf, aes(x = x, y = y), color = "darkcyan”, linewidth = 1.2) +
labe(title = "Distribution of Data“,
subtitle = paste("Normal (means<" mu, ", std=",6 sigma,')" sep=""),
X = "x", y = "Density") +
theme minimal()+
theme(
plot.title « elenent text(size = 12, face = "bold"),
plot.subtitle =« element text(eize = 11, face =« "bold"),
axis.text = element text(face = "bold")
)
pl ¥ disply the density curve

Distribution of Data
Normal (mean=5, std=4)

0.10

Density

0.00
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2. MSE Ratio Plot (relative to the sample varlance)

df _ratia <- data.frame(
Sampledize = rep(sample_size, 3],
Eztimator = reple("d{n)=n-1", "din)=n", "d{n)=ocptimal®™}, each = length({sample mize)),
Ratio = c({msel / mael, m8e2 / mgel, mse3 / mael))
p2 <- ggplet{df_ratio, aea{x = SampleSize, y = Ratise, color = Estimater)) +
geom_line(linedidth = 1.3) +
geom_point{aize = 2} +
scale_color_manunal (valueas = ef
"din)=n=-1"="hlua®, "d{n) =n"="pagantal®”, "aln) =gpt i.na_l"-"a:auge"} A
name=HULL,
guide = puide_legend{direction = "horizental™, nrow=2)} +
scale_¥_contimuous(
limite = e{min{df_ratiofRatio)-0.1, 1), # y-axis scale
breaks = seq(d.20, 1, by = 0.1}) +
labe(
title = "MSE Ratia",
subtitle = paste("relatiwe to the sample variance\n(optimal d{n)=n+", optimaly,"}", sep=""},
X = "Sapple Size®;
y = "Ratia") +
theme _minimal () +
thems
plot.title = elesment_text(size = 12, face = "bold"),
plot.subtitle = element text(size = 11, face = "bold"),
legend. pogition="ingida",
legend. poaition. inside=e(0.5, @.15},
legend.direction = "horizental",
axia.text = element_text(face = "bald"),
legend . text = element text{face = "bold")})+
guidea{color = guide_legend(nrow = 1}}
2 # disply the MSE ratios

MSE Ratio
relative to the sample variance
(optimal d{n)=n+1)
1.0 - - - - -
2 0.9
&
0.8

-+ din}=n =# din}=n-1 ~* din)=optimal

25 50 75 100
Sample Size
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3. Varlance & Blas Reduction and MSE Reduction Plot

df _bar <- data.frams(
Sampledize = factor({sample_size],
Metric = repl{c("Variance Reduction”, "Eias Addition"), each = length{eample_size}),
Value = c(variance_reduction, bias_addition)

]

df _line <- data.frams(
Sampledize = factor{sample_size),
Metric = "M3IE Reduction",
Value = mge_reduction

¥

PE <= ggplot(} +
geom_bar(data = 4f_bar, ases(x = 3ample3ize, y = Value, fill = Metric),
gtat = "identity", position = "dodge") +
geom_line(data = df_line, asa{x = SampleSize, y = Value, coleor = Metriec, group = Metrie),
linewidth = 1.2) +
geom_point{data = df_line, aes(x = Sampledize, y = Value, color = Metrie),
aize = 2} +
scale_fill _manual (values = cf"Variance Reduction®™ = "darkblue®, "Bias Addition™ = "darkorange"}) +
scale_color_manual (values = e{"M3E Reduction®™ = "red")} +
scale_y_continuous(
limite = c({min{df_barjValue)-0.2, 0.25],
breakes = aeq(-0.5, 0.25, by = 0.25)
3o+
labe(
title = "MSE Reduction (Optimal d(m))}",
aubtitle = *(reduced variance & added bias)",
X = "Sapple Size®,
y = "Propartion”,
1111 = =",
color = "1
3} o+
theme _minimal () +
thems |

plot.title = elesment_text(size = 12, face = "bold"),
plot.subtitle = element_text(size = 11, face = "bold"),
# panel.grid = element_blank(},

legend. position="inside" ,

legend. poaition. inside=e(0.5, @.15},

legend. spacing.y = unitf{D.1, "em"), # wertical spacing between legend items
lagend . box. epacing = wnit(.06, "en"}, # space balwesn separate legends
legend. key. height = unit(0.3, "em"}, # height of individual legend keys

legend . margin = margin(0, @, O, O, "pt"}, ¥ internal margin
legend . text = element_text({face = "bold"),
axis.text = element_ text(face = "bald")
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MSE Reduction (Optimal d{n})
(reduced variance & added bias)

0.25

000

Proportion

Bias Addition
B Variance Reduction

== MSE Reduction

15 30 45 &0 75 100
Sample Size

Display two graphs

Epz | p3]
MSE Ratio MSE Reduction (Optimal d{n})
relative to the sample variance (reduced variance & added bias)
{optimal d{n)=n+1)
1.0 = = & - = = 0.25
0.8 c 0.00
o £
- 8
o
-0.25
0.8
Bias Addition
== d{n)j=n =8= d{n)=n-1 dn)=optimal B Varlance Reduction
== MSE Reduction
25 50 75 100 15 30 45 60 75 100
Sample Size Sample Size
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Simulation for variance estiamtor (Gamma)

Setup Parameters and Inftlalize contalners

alpha <- 3 # zcale paramefer
bata <- 6 # shape paramefer
] <= 1000 & the number of repealition

nvee <= (15, 30, 45, 60, 75, 100} & zample sizes

nlen <- length(nwvee)

VArtrue <= plphasbeta™2 # brue varigfce
kurtosis <= G/alpha+3 # Kurtozis of Gamwa disiributicon

optimalr <= max(-1,round (Eurtoais-2)]}

sample_sizs <- Bvec

# optimal din)

megel <- mes2 <- paed <- maed <- numeric{nlen)
varl <- var2 <- var3d <- vard <- numeric{nlen}
biel <- bie2 <- big3 <- biad <- pDumeric{nlen)
all_varhatl <- all _warhat? <- all_varhat3 <- all_varhat4d <- vector("list”, nlen}

Simulation

for (i im 1:nlemn} {
n <= nvec[i]

varhatl <- wvarhatl <- varhat3 <- varhatd <- numeric(M)

for {j im 1:M} {

x <= rgammai{n, alpha, 1/beta) # gensrate rondos nunbers
betahat <= mean(x+log(x)) -mean{x)*mean{log(x)) & sstmate of bata

alphahat  <- mean(x)/betahat

# estimate of alpha

optdn <- max (-1, nikurtosia=-2) & opiimal din)

varhati[j] <- war(x)

varhat2[j] <- (n-1)/n =var(x)

varhat3[j] <- (n-1)/eptdasvar(x)

varhat4[j] <- alphahatsbetahat 2
}
# Store each full vector
all_varhati[[i]] <- warhatl
all_varhat2[[i]] <- wvarhat2
all_varhat3[[i]] <- wvarhat3
all_wvarhatd[[i]] <- warhatd

# Compule performonce melrics

meel[i] <= mean((varhatl-vartrus) 2}
meed[i] <- mean({varhat2-vartruoe) "2}
meed[i] <- mean({varhat3-vartruoe) "2}
mead[i] <- mean((varhatd-vartrue) "2)

# sample variance

¥ method of moment

¥ apfimal

# gamme approcimalion
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vari[i] <- war(varhati)
var2[i] <- war(varhatZ)}
vard[i] <- war(varhat3)}
vard[i] <- war(varhat4d)

bigl[i] <- (mean{varhatl)-vartrue) 2
big2[i] <- (mean(varhat2)-vartrue) 2
bisd[i] <- (mean(varhat3)-vartrue) 2
bigd4[i] <~ (mean({varhatd)-vartrue) 2

1. Gamma PDF Plot

xw <- geql0, 3+alphasbeta, 0.1} # z-asis
x_data <- rgamma(n, alpha, 1/beta) & Simulated Gamma data

# Theoretical dénsily curve
xv <- geql0,4 + mean(x_data), 3.1)
df _pdf <- data.frame(x = xv, y = dgamma{xv, alpha, 1/beta))

# Plot: histegram with densily after_stel (density)
pl <- ggplet{data.frame(x = x_data), aea(x = x)} +
geom_histogran(aes(y = after_stat(density}), bins = 40,
£111 = "lightblue", coler = "white®, alpha = 0.8} +
geom_line(data = df_pdf, aesa{x = x, y = y)}, calor = "darkcyan”, linewidth = 1.2) +
laba(title = "Distributien of Data®,
gubtitle = paste("Lognormal (" ,alpha, *.,", beta,”)" . sep=""},
x = "x", y = "Density") +
thems_minimal ()+
theme
plot.title = alement_text(size = 13, face = "bald"),
plot.subtitle = element text(size = 11, face = "bold"),
axia.text = slement_ text(face = "bald")

H
pl & disply the densily curve
Distribution of Data
Lognormal (3,6)
0.05
0.04
& 0.03
8 oe
o.m
0.00
1] 20 40 &0
X
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2. MSE Ratio Plot (relative to the sample varlance)

df _ratio <- data.frame(
Sampledize = rep(eample_size, 4],
Eztimator = rep{e("d{n)=n-1", "din)=n", "d{n)=cptimal®™, "Froposed"),
each = length{eample _size}),
Ratio = cimsel / mnsel, mee2 / meel, mee3 / msel, msed / meel)
]
p2 <= ggplot{df_ratio, aea{x = SampleSize, y = Ratio, color = Estimater)) +
geom_line(linewidth = 1.2) +
geom_point{aize = 2} +
scale_color_manual (valueas = &f
"din}=p-1"="blua”, "d{n)=n"="magental®, "d{n)=optimal"="srange", "Propoged”="red"
HA
name=HULL,
guide = gpuide_legend({direction = "horizeontal™, nrow=2)} +
scale_y_continwous(

limite = e{min{df_ratiofRatino)-0.2, 1), # y-aziz scale
breake = aeq(d.20, 1, by = 0.1}) +
labe(
title = "MSE Ratia",
subtitle =

paste("relative to the sample wariasncel\n(optimsl din)=n+", optimaly, "}" , sep=""),
¥ = "Sample Size", y = "Ratia") +
thems _minimal () +
themes(
plot.title = elesment_text(size = 12, face = "bold"),
plot.subtitle = element_text(size = 11, face = “"bold"),
legend. poaition="insida",
legend.position. inside=e(0.5, @.15},
legend . direction = "horizontal",
axia.text = element_text(face = "bald"),
legend. text = element_text{face = "bold"})

P2 # disply the MSE vatics

MSE Ratio
relative to the sample variance
(optimal d{n)=n+3)
10 ® = = + = -
o '—.”-'-'._—
2 08
0.7
0.6 =8= d{n}=n o= d{nj=optimal
=8= d{n}j=n—1 =#= Proposed
25 50 75 100
Sample Size
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3. Varlance & Bias Reduction and MSE Reduction Plot

bias_sddition = (bied)/mael
mee_reduction = (meesd-meel) /mael
variance reduction = mee_reduction-bias_sddition

df _bar <- data.frame(
Sampledize = factor{zample_size),
Metric = repl{c("Variance Reduction™, "Eias Addition"), eamch = length{sample size}),
Value = c(variance_reduction, bias_additien)
¥
df _line <- data.frams(
Sampledize = factor({sample_size],
Metric = "M3IE Reduction",
Value = mse _reduction
¥
S <- ggplot() +
geom_bar(data = 4f_bar, ases(x = 3ample3ize, y = Value, fill = Metric),
gtat = "identity", pogition = "dodge") +
geom_line(data = dAf line, aea(x = SampleSize, y = Value, coler = Metrie, group = Metrie],
linewidth = 1.2) +
geom_point (data = df_line, aes(x = SampleS3ize, y = Value, color = Metrie),
aize = 2} +
scale_fill _manual (values = e{"Variance Reduction®™ = "darkblue®, "Bias Additien™ = "darkeorange"}) +
gcale_color_manual (values = c{"M3E Reduction®™ = "red")} +
scale_y_continwous(
limite = e{min{df_barjValue)-0.2, 0.25),
breakes = aeq(-0.5, 0.25, by = 0.25)
Y+
labe(
title = "M3E Aeduction (Proposed)®,
aubtitle = *(reduced variance & added bias)",
x = "Sasple Siza®™,
y = "Propertien”,
1111 = =M,
color = "1
3} o+
theme _minimal () +
thems |

plot.title = elesment_text(size = 12, face = "bold"),
plot.subtitle = element text(size = 11, face = "bold"),
# panel.grid = element_blank(},

legend. position="insida"

legend.pogition. inside=c(0.5, @.15),

legend. spacing.y = unitf{0.1, "cm"), # wertical spacing between legend items
lagend. bex. epacing = wnie(.06, "en"}, # space balwesn separate legends
legend. key height = unit(0.3, "en"), # height of individusl legend keys

legend . margin = margin{0, ¢, O, O, "pt"}, # internal margin
legend . text = element_text({face = "bold"),
axis.text = element text(face = "bald")
K
p3 & disply the MSE ratios
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MSE Reduction (Proposed)
(reduced variance & added bias)
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MSE Ratio MSE Reduction (Proposed)
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suppose we have a sample from a normal distribution with unknown
mean and variance. What is the way to get the variance estimator
with the smallest MSE?

To estimate the variance of a normal distribution with unknown mean and variance, the estimator that
achieves the smallest Mean Squared Error (MSE) typically results from a bias-variance tradeoff. Here's
how you can think about it:

@" Goal

Find an estimator of the population variance o that minimizes:
MSE(5?%) = Bias®(5?) + Var(6?)
~= Two Common Estimators

Let X1,..., X, ~ N(p,0?):

1. Unbiased Estimator

1 _
SE-] = Z(Xi - X)2

+ [@ Unbiased: E[S?_,] = o
« X Slightly larger variance than the biased version

2. Biased but Lower MSE Estimator

n

1 _
Si= Z;(X,- - X)?
« X Biased downward: E[S?] = "142

n

. Lower MSE due to smaller variance

Minimum MSE Estimator

The estimator with minimum MSE is a shrinkage version of the unbiased estimator:

n

1 _
~2 _ 2 _ @2
OMSE-opt — ’I_'L Z(Xl - X) B Sn
i=1
While it is biased, its bias is small and its variance is smaller than that of the unbiased estimator.
Therefore, it has a lower MSE, which is preferred in many applied contexts (like predictive modeling,

machine learning, or empirical Bayes).
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what about using n+1 for a denominator?

Great question.

Using n + 1 as the denominator for a variance estimator is uncommon and does not produce an
estimator with desirable statistical properties. Let's examine what happens when we use it.

W Let's define the estimator:
1 n
2 _ 52
S,
i
Compare this with:
+ §2=1%(X; — X)* — biased estimator, lower MSE

« S = nll 32(X; — X)? — unbiased estimator

4§ What happens withn + 1?
We can analyze its bias:

Let X1,..., X, ~ N(p,a?), then:

Therefore:

This estimator is:
+ More biased than S?, because -1 < ™!
n+1 n

* Lower in variance than Sﬁ 1, but not enough to offset the increased bias

+ Worse MSE than both S2 and S2_;

& Interpretation

Using n + 1 divides by a number larger than n, leading to an underestimation of the variance — more

than the already-biased Sﬁ. This worsens both:
* the bias

» and the mean squared error
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s Conclusion

Using n + 1 as the denominator for estimating variance is not advisable. It increases bias substantially

without providing a compensating reduction in variance.
If you want:
* Unbiasedness » usen — 1

* Minimum MSE = use n

« Shrinkage or regularization - use Bayesian or empirical Bayes estimators (or James-Stein-type

adjustments)

| think using n+1 produces a smaller MSE than using n.

You're absolutely right to scrutinize this. Let's work through it carefully—comparing the estimators using

n — 1, n, and n + 1 as denominators in terms of bias, variance, and MSE to determine which actually

achieves the smallest MSE when estimating the population variance o? from a normal distribution.

ul Setup
Let:
° Xla"'aXn NN(.”’SO'Z)
+ Sample mean: X = ! 3" X;

« T =3 (X; — X)? the corrected sum of squares

Then the following three estimators are:

Estimator Formula Bias
52| (Unbiased) T 0
2 (Bj T o2
S2 (Biased, common L .
MSE-optimal)
, he?
SZ 1 (Your question) n_3+"1 _ (nn+)lg

Variance

20"
n—1

20 (n—1)*
2

20" (n—1)*
(n+1)?

MSE

20

n—1

ot 20! (n—1)?
n n?

2
“1)e? .
((”n +)1” ) + variance
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Derivation

1. S2_, (Unbiased)

Bias =0, Var= 20 = MSE =
n—1

2. 52 (Common MSE Estimator)

e 2] _ n-1_2 e O

¢ Bias: E[S;| = " “0° = Bias = -7
4 2
« Variance: Var(82) = % (22_1)

Then:
o2 2 20’4(n — ]_)2 ol 20’4(’”, _ 1)2 ot (1 + 2(,” . 1)2)
MSE = | — . St S G —
( n ) - n? n? + n? n2
2

3. Sn+1

* Bias: E[Si+1] = :;ioz = Bias = —g2. nil

* Variance: 2?:51‘;)}2)2

MSE— (o2, 2 ) 42017 40t 2et(n-1) ot(442n 1))

& Numerical Example (say n = 10)

. §2 :MSE= %~ (.2220"

s §2.MSE= L28lgt— 163,41 6344

100 100
o S2,,:MSE= 228154 — 18654 ~ 1.37204
So:

« MSE,;; < MSE,

¢ But both are worse than the unbiased estimator for small n
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Conclusion

You are correct:

For certain sample sizes, especially small to moderate n, using n + 1 can produce an estimator with
lower MSE than using n.

This is an example of the bias-variance tradeoff in action: more bias with a sharp drop in variance can

still result in a better overall MSE.
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what is the meaning "But both are worse than the unbiased
estimator for small n"? | think both using n or n+1 are uniformly
better than unbiased estimator in terms of MSE.

You're absolutely right to ask this question—it touches on an important and subtle point in statistical
estimation theory.

Let's clarify what the original statement “But both are worse than the unbiased estimator for small n"

meant, and whether it holds true. You are correct to question it, and your reasoning is very well-founded.

The Big Picture: Bias vs. MSE

There are two key criteria to compare estimators:
1. Unbiasedness: Whether E[f] = 6

2. Mean Squared Error (MSE): E[(f — 6)2] = Bias” + Variance

+ Facts About the Sample Variance Estimators

Suppose we estimate variance o2 from a normal population:
: : Q2 1 2
* Unbiased estimator: $* = _*, 3 (X; — X)

« Biased estimator (ML): 53, = 1 }(X; — X)?

n

« Alternative estimator: S2, | = 1. (X, — X)?

€3 Biases:
* S2: unbiased
+ 52 downward bias

. Sgﬂ: even more downward biased

€3 MSEs:

« 52 and even S | have smaller MSE than S2_, because their variance is much smaller and the
increase in bias is more than offset.

This holds uniformly for normal data.
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Correction: You are Correct

Estimators using n. or n + 1 have lower MSE than the unbiased estimator using n — 1 for all n when
the data come from a normal distribution.
In other words:
¢ The unbiased estimator is not MSE-optimal.

¢ MLE and similar biased estimators dominate the unbiased one in MSE.

& Historical Insight:
This issue has been discussed in depth, for example, by:

« Stein (1956): Where James-Stein estimators and shrinkage methods dominate traditional unbiased

estimators.

« Lehmann and Casella, Theory of Point Estimation (2nd ed.): They show that unbiasedness is not

always desirable, and MSE should often take priority.

So the corrected statement should be:

While the estimator using ﬁ is unbiased, the estimators using % or ﬁ uniformly achieve smaller

MSE, making them preferable in terms of accuracy, especially when the goal is minimizing overall
estimation error.

192



