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 Understanding variance estimation is a cornerstone of statistical education. While 

the unbiasedness of the sample variance is a valuable property, it should not be 

the sole criterion for selecting an estimator. This paper advocates for incorporating 

mean squared error (MSE) considerations into the teaching of variance estimation 

in statistics classrooms. In contemporary applications, estimators with lower MSE 

are often preferred, even when they are biased. In this study, we first examine the 

relationship between the minimum-MSE variance estimators—among those based 

on the sum of squared deviations—and the kurtosis of the underlying population 

distribution. Furthermore, we demonstrate that, particularly for skewed 

distributions, alternative estimators can substantially outperform the sample 

variance in terms of MSE. By using variance estimation as a framework, 

instructors can effectively introduce students to the bias-variance trade-off, a 

foundational concept in statistical estimation and model selection. To support 

classroom implementation, we provide a series of R codes for the simulation-

based visualizations that foster students’ intuition about the interaction between 

bias and variance. 
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Introduction 

 

The sample variance, alongside the sample mean, is among the most fundamental statistics introduced in both 

introductory and intermediate-level statistics courses. Given its foundational role in data analysis, the computation 

of sample variance is typically introduced early in the curriculum. The definitions of the population variance 𝜎2 

and sample variance 𝑠2 are given as follows: 

𝜎2 =
1

𝑁
 ∑(𝑥𝑗 − 𝜇)

2
    𝑎𝑛𝑑   𝑠2 =

1

𝑛 − 1
 ∑(𝑥𝑖 − 𝑥)2 

where 𝜇 represents the population mean, and 𝑁 and 𝑛 denote the population and sample sizes, respectively. With 

formula in (1), typically, the following rules are given to students: 

 

To calculate variance from a population, we divide the sum of squared deviations by 𝑁, but when calculating 

variance from a sample, we have to divide it by 𝑛−1 rather than 𝑛. 
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The shift in the denominator of the sample variance often perplexes students. While the population mean and 

variance use 𝑁, and the sample mean uses 𝑛, the sample variance uniquely involves dividing by 𝑛 − 1. 

Understandably, students are left questioning this inconsistency. Faced with this conceptual tension, students—

like Hamlet in Shakespeare’s tragedy - might exclaim:  

“𝑛 −1 or 𝑛, that is the question!” 

This question is not only natural but also pedagogically important. From a student’s perspective, dividing by 𝑛−1 

rather than 𝑛 may appear counterintuitive since there are 𝑛 squared deviations. Examples of conventional 

instructions commonly given to students to address this confusion include the following: 

Case 1: We divide by 𝑛 − 1, rather than dividing by 𝑛, when computing a sample’s variance; there’s some 

mathematical nuance here, but the end result is that doing this makes this statistic slightly more reliable 

and useful (Diez et al. 2019, p. 47). 

 

In general, the term “reliable” is used to describe an estimator that does not fluctuate significantly depending on 

the sample when estimating a population parameter. In many cases, using 𝑛 can actually result in more stable 

(i.e., less variable) estimates than using 𝑛 − 1. The subsequent sections will delve into this issue. 

Case 2: The sample variance underestimates the population variance when the denominator in the sample 

formula for variance is 𝑛. However, the sample variance does not underestimate the population variance 

if the denominator in the sample formula for variance is 𝑛 − 1 (Mann 2010, p. 94). 

This instruction suggests that using 𝑛 − 1is more desirable than using 𝑛, as the latter tends to underestimate the 

population variance. However, underestimation does not necessarily imply lower accuracy. In many cases, an 

underestimated estimator may actually be closer to the true population variance than one that is not. This point 

will be examined in more detail in the upcoming sections, too. 

 

The confusion caused by the denominator of the sample variance often arises from the ambiguous phrasings 

between “calculating variance from a sample” and “finding a sample variance”. Thus, before addressing the 

question directly, it is useful to clarify what is truly meant by “calculating variance from a sample.” This 

clarification is essential because the conventional instruction can misleadingly imply that any method not using 

𝑛 − 1 is incorrect. In reality, the so-called sample variance is merely one of several valid estimators of the 

population variance. Some educators and students mistakenly regard the use of 𝑛 instead of 𝑛−1 as a 

computational error rather than a methodological alternative. However, using 𝑛 leads not to a “wrong” estimator, 

but rather to a “different one,” each with its own statistical desirable properties. 

 

This article aims to investigate the enduring presence of the “Hamlet’s question” in statistics education and to 

identify the pedagogical misconceptions that sustain it. These misconceptions are closely tied to the criteria used 

for evaluating estimators. In particular, we argue that undergraduate statistics courses should go beyond the 

conventional emphasis on unbiasedness and incorporate the concept of Mean Squared Error (MSE) as a more 

comprehensive metric for assessing estimator performance (Levy 2006). 

 

To illustrate this point, we investigate the form of variance estimators that minimize the mean squared error when 

data are drawn from symmetric distributions. In particular, we examine estimators based on the sum of squared 
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deviations with a denominator of 𝑛 + 𝑟, where 𝑟 ≥ −1, highlighting that the issue extends beyond the common 

debate of using 𝑛 − 1 versus 𝑛 (Rosenthal 2015). We then extend the discussion to asymmetric distributions, 

proposing alternative variance estimators that deviate substantially from those optimal under symmetry, and 

compare their MSEs by analyzing both bias and variance components. Ultimately, integrating these discussions 

into instruction provides students with a broader understanding of estimation and presents a valuable opportunity 

to introduce the concept of the bias-variance trade-off, a fundamental principle in parameter estimation and model 

selection within machine learning (Murphy, 2012). 

 

Sample Variance and Its Denominator  

 

When we compute a variance from sample data, we are not calculating the population variance itself but instead 

estimating it. Crucially, estimation is not a uniquely defined procedure. While the population variance is a fixed, 

unique, and unknown quantity, there are multiple valid ways to estimate it based on observed data. The sample 

variance is merely one among many possible estimators. 

 

Analysts select an estimator based on its statistical properties and the goals of their analysis. No single estimator 

is universally best in all scenarios; each has its advantages and disadvantages. Although the true population 

parameter is fixed, the method of estimation depends on context, assumptions, and desired properties such as 

unbiasedness or efficiency (Casella & Berger 2002). The applicability of this idea extends beyond variance 

estimation and can be equally relevant in the estimation of other parameters. For example, although the sample 

mean is often used to estimate the population mean, it is not always the optimal choice. When sampling from a 

skewed distribution such as the lognormal, the sample mean can be highly variable, even with large sample sizes. 

In such cases, alternative estimators may offer more stable performance (Shen et al. 2006, Longford 2009). 

 

Understanding that estimation is not a one-size-fits-all process makes it easier for students to appreciate why the 

denominator in the sample variance formula is 𝑛 − 1. This choice is based on one of the desirable statistical 

properties: unbiasedness. It is equally important to address the source of confusion embedded in the terminology 

“sample variance.” While “sample variance” is commonly defined using 𝑛 − 1 in the denominator, it is only one 

possible estimator of the population variance. That is, it is “correct” to divide by 𝑛 − 1 when one is explicitly 

computing the sample variance as defined, and this will guarantee the unbiasedness of the sample variance. 

However, this does not imply that dividing by 𝑛 is incorrect. In fact, using 𝑛 instead yields another legitimate 

estimator known as the method of moments estimator (MME), which may be preferable under specific evaluation 

criteria. 

 

Mean Squared Error and the Bias-Variance Trade-off 

 

The sample variance (using 𝑛−1 for the denominator) possesses the desirable property of unbiasedness. possesses 

the desirable property of unbiasedness. At this point, it is vital to investigate the key differences between variance 

estimators that use 𝑛 − 1 and those that use 𝑛 as the denominator. The central issue lies in understanding the trade-

off between bias and variance, and more broadly, in evaluating estimators through the lens of mean squared error 
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(MSE). The MSE of an estimator is defined as the expected squared deviation from the true parameter value: 

MSE(𝜃) = E [(𝜃 − 𝜃̂)
2
] = Bias2(𝜃̂) + Var(𝜃̂), 

where 𝜃 is the true parameter and 𝜃̂ is an estimator for 𝜃. The sample variance using 𝑛 − 1 is an unbiased estimator 

of the population variance regardless of the population distribution. As a result, its MSE is equal to its variance. 

This property makes it particularly appealing in classical statistical inference, as unbiasedness has long been a 

dominant criterion (Mood et al. 1974).  However, in contemporary statistical and machine learning practices, 

MSE has become a more influential criterion. Slight bias may be acceptable—or even preferred—if it significantly 

reduces the variance of an estimator, thereby lowering its overall MSE (Kubokawa & Srivastava 2002, Hara 

2007). This shift in preference is particularly evident in the machine learning context, where algorithms are often 

chosen based on their predictive performance, not necessarily on unbiasedness (Hastie et al. 2009). 

 

To return to our example, when data are sampled from a normal distribution, the variance estimator obtained by 

dividing by 𝑛 is biased, but it has a smaller MSE compared to the unbiased sample variance. Under an MSE-based 

evaluation, this biased estimator may thus be more desirable. Rather than teaching students to favor the sample 

variance solely due to its unbiasedness, educators should encourage a broader perspective—one that incorporates 

multiple criteria for evaluating estimators, especially MSE. By engaging students in MSE-based comparisons, 

instructors can deepen students’ understanding of the different goals of estimation and foster more critical 

thinking. Furthermore, this pedagogical approach provides a natural transition to the bias-variance trade-off, a 

central concept in both advanced statistical theory and data science. 

 

The bias-variance trade-off plays a foundational role in parameter estimation and model selection. For instance, 

ordinary least squares (OLS) estimators in regression models are unbiased and possess the minimum variance 

among all linear unbiased estimators, irrespective of the underlying distribution of the error term (Gauss-Markov 

theorem, Stigler 1981). However, ridge regression introduces bias in order to reduce variance, often resulting in 

a lower mean squared error (Lakshmi & Sajesh 2025). This trade-off is also critical in model selection within 

machine learning, where increasing model complexity typically decreases bias but increases variance. Effective 

model selection hinges on striking an optimal balance to minimize MSE. Introducing this framework at the 

intermediate level equips students to connect foundational statistical concepts with modern data science practices. 

 

MSE of the Sample Variance and 𝑺𝒅(𝒏)
𝟐  

 

Suppose we have a random sample 𝑋1, …, 𝑋𝑛, from a population with mean 𝜇 and variance 

𝜎2. Define 𝑆𝑑(𝑛)
2  as 

𝑆𝑑(𝑛)
2 =

1

𝑑(𝑛)
 ∑(𝑋𝑖 − 𝑋)

2
 

where 𝑑(𝑛) is any function of 𝑛. The sample variance can be regarded as a special case of 𝑆𝑑(𝑛)
2  with 𝑑(𝑛) = 𝑛 − 

1. As stated earlier, the sample variance 𝑆𝑛−1
2  is an unbiased estimator for 𝜎2. If the sample is obtained from a 

normal population, 𝑆𝑛
2

 
 is biased, but it is both a method of moments estimator (MME) and a maximum likelihood 

estimator (MLE) for 𝜎2. Furthermore, 𝑆𝑛+1
2  is the estimator for 𝜎2 that has the smallest MSE for the normal sample 

(Lehmann 1983). 
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One of the principal advantages of the sample variance is that it serves as an unbiased estimator of the population 

variance, irrespective of the underlying population distribution, satisfying 𝐸(𝑆𝑛−1
2 ) = 𝜎2. Furthermore, when the 

underlying distribution is normal, the sample variance is the uniformly minimum variance unbiased estimator 

(UMVUE) for 𝜎2 (Casella & Berger 2002), implying that it achieves the lowest variance among all unbiased 

estimators. Due to these favorable properties, the sample variance is widely employed across numerous fields as 

the standard method for variance estimation. Nonetheless, from an MSE perspective, we can identify many biased 

estimators that outperform the sample variance. Note that since the sample variance is unbiased, its MSE coincides 

with its variance, that is, MSE(𝑆𝑛−1
2 ) = Var(𝑆𝑛−1

2 ). The variance of 𝑆𝑛−1
2  is given by, 

Var(𝑆𝑛−1
2 ) =

𝜎4

𝑛
(𝜅 −

𝑛 − 3

𝑛 − 1
)  

where 𝜅 = 𝐸(𝑋 − 𝜇)4/𝜎4 represents the kurtosis (Cho & Cho 2009). Kurtosis, 𝜅, is a measure that describes the 

shape of a probability distribution’s tails in relation to its overall shape. It helps assess whether the data are heavy-

tailed or light-tailed, which impacts the likelihood of outliers (Balanda & MacGillivray, 1988). As the heaviness 

of the tails increases, the value of 𝜅 also increases. For example, the normal distribution, which has the light tails, 

has 𝜅 = 3, whereas the Laplace distribution, with heavier tails that decay more slowly, has 𝜅 = 6. Using (2), we 

can find the variance and the squared bias of 𝑆𝑑(𝑛)
2  as 

Var(𝑆𝑑(𝑛)
2 ) =  Var ( 

𝑛 − 1

𝑑(𝑛)
𝑆𝑛−1
2 ) =

(𝑛 − 1)2

𝑑2(𝑛)
⋅
𝜎4

𝑛
(𝜅 −

𝑛 − 3

𝑛 − 1
) 

Bias2(𝑆𝑑(𝑛)
2 ) =  E2 ( 

𝑛 − 1

𝑑(𝑛)
𝑆𝑛−1
2 − 𝜎2) = 𝜎4 (

𝑛 − 1

𝑑(𝑛)
− 1)

2

 

Therefore, the MSE of 𝑆2
𝑑(𝑛) is obtained by adding (3) and (4), 

MSE(𝑆𝑑(𝑛)
2 ) =  𝜎4 (

(𝑛 − 1)2(𝜅 − 3) + 𝑛(𝑛 + 1)(𝑛 − 1)

𝑛 ⋅ 𝑑2(𝑛)
−
2(𝑛 − 1)

𝑑(𝑛)
+ 1) 

and it is minimized at 

𝑑(𝑛) = 𝑛 + 𝜅 − 2 +
3 − 𝜅

𝑛
 

From (6), we can see that the optimal 𝑑(𝑛) is a linear function of 𝜅 with a slope close to 1. Since the theoretical 

minimum value of 𝜅 is 1, it follows that 𝑑(𝑛) > 𝑛−1. Therefore, unless the underlying distribution has a 𝜅 value 

close to 1, the sample variance with denominator 𝑛 − 1 rarely achieves the minimum mean squared error. 

 

MSE of 𝑺𝒅(𝒏)
𝟐  for Symmetric Distributions 

 

For a normal distribution with kurtosis 𝜅 = 3, the expression in Equation (6) indicates that the mean squared error 

(MSE) of the estimator 𝑆𝑑(𝑛)
2  is minimized when 𝑑(𝑛) = 𝑛 + 1. In other words, 𝑆𝑛+1

2  outperforms the unbiased 

sample variance 𝑆𝑛−1
2  in terms of MSE when estimating 𝜎2 from normally distributed data. Figure 1 illustrates the 

squared bias, variance, and MSE of 𝑆𝑑(𝑛)
2  for 𝑑(𝑛) = 𝑛 − 1, 𝑛, and 𝑛 + 1 under the normal distribution. While 𝑆2

𝑛+1
 

exhibits the largest squared bias (top-left panel), the corresponding reduction in variance (top-right panel) 

significantly outweighs the increase in bias, resulting in the smallest overall MSE (bottom-left panel). The bottom-

right panel presents the MSE ratio of 𝑆𝑛
2  and 𝑆𝑛+1

2  relative to the sample variance 𝑆𝑛−1
2 . Notably, both estimators 

uniformly outperform the traditional unbiased sample variance across various sample sizes. 
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These results provide practical guidance for selecting an estimator for 𝜎2 when working with data from a normal 

distribution. If unbiasedness is the primary concern, 𝑆𝑛−1
2  remains the appropriate choice. If one seeks an estimator 

based on the method of moments or the maximum likelihood principle, 𝑆𝑛
2  is preferred. However, if minimizing 

MSE is the objective, then 𝑆𝑛+1
2  is the optimal estimator. 

 

 

Figure 1. Squared Bias, Variance, and MSE of Sn−1
2 , Sn

2, and Sn+1
2  for Normal Samples with σ2 = 1. 

 

Relation between Kurtosis and Optimal 𝑑(𝑛)  

 

Because the MSE of 𝑆𝑑(𝑛)
2  depends on the kurtosis 𝜅 of the underlying distribution, the optimal value of 𝑑(𝑛) that 

minimizes MSE is also a function of 𝜅. As shown in Equation (6), 𝑑(𝑛) increases linearly with 𝜅 with a slope of 

approximately (𝑛 − 1)/𝑛 ≈ 1 for moderate sample sizes. Consequently, as 𝜅 increases by one unit, the optimal 𝑑(𝑛) 

increases by approximately one unit as well. 

 

Figure 2 depicts the relationship between 𝜅 and the optimal 𝑑(𝑛) for several symmetric continuous distributions 

that are commonly included in statistics curricula (In the graph, GND stands for the generalized normal 

distribution). The theoretical lower bound of 𝜅 is 1, attained by the Bernoulli distribution with a success probability 

of 0.5 in the discrete case. For continuous distributions, highly U-shaped forms, such as lim𝛼→0+ Beta(𝛼,𝛼) satisfy 

𝜅 → 1+ (Johnson et al. 1995). Distributions with 1 < 𝜅 < 1.5, such as the Beta(𝛼,𝛼) distribution with 0 < 𝛼 < 0.5, 

exhibit high density near their boundaries and have finite support. For these highly U-shaped distributions, the 

mean squared error (MSE) of the variance estimator is minimized when 𝑑(𝑛) = 𝑛−1. In contrast, for symmetric 

distributions with 1.5 < 𝜅 < 2.4 − including the arcsine, uniform, and triangular distributions − the sample variance 

with 𝑑(𝑛) = 𝑛 − 1 yields a higher MSE than 𝑆𝑑(𝑛)
2  with 𝑑(𝑛) = 𝑛. For distributions with 2.4 < 𝜅 < 3.5, such as the 

normal and generalized normal distributions with a scale parameter around 2, the MSE is minimized when 𝑑(𝑛) 

= 𝑛+1. The Laplace distribution, also known as the double exponential distribution, has 𝜅 = 6, and the MSE of 

𝑆𝑑(𝑛)
2  is minimized at 𝑑(𝑛) = 𝑛 + 4 (Balanda & MacGillivray 1988). 
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Figure 2. Kurtosis Values along with the Corresponding Optimal 𝑑(𝑛) values that Minimize the MSE. 

 

Illustrating the bias-variance trade-off   

 

Figure 3 shows how the squared bias, variance, and MSE of 𝑆𝑑(𝑛)
2  change as a function of 𝑑(𝑛) for a fixed sample 

size of 𝑛 = 10. As 𝑑(𝑛) increases, variance consistently decreases, while squared bias increases. The bias becomes 

zero when 𝑑(𝑛) = 𝑛 − 1. This bias-variance trade-off yields a convex MSE curve, resulting in a unique minimum 

MSE value. As shown in (4), the squared bias component does not depend on the kurtosis and therefore increases 

uniformly as 𝑑(𝑛) increases across all three distributions. In contrast, the variance component, illustrated in (3), 

is larger for distributions with higher kurtosis and decreases much more rapidly with respect to 𝑑(𝑛) than the 

squared bias component. Figure 3 also displays, when restricted to integer values of 𝑑(𝑛), the optimal value 

minimizing the mean squared error (MSE) depends on the kurtosis of each distribution: for the uniform 

distribution, 𝑑(𝑛) = 𝑛 = 10; for the normal distribution, 𝑑(𝑛) = 𝑛 + 1 = 11; and for the logistic distribution, 𝑑(𝑛) = 

𝑛 + 2 = 12. 

 

Figure 3. Bias-variance trade-off for the Variance Estimator 𝑆𝑑(𝑛)
2  
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These findings offer compelling pedagogical value for illustrating trade-offs in estimator performance. This 

analysis highlights the fundamental trade-off between bias and variance in statistical estimation. It serves as an 

accessible and powerful educational example, helping students move beyond the traditional focus on unbiasedness 

and develop a deeper understanding of estimator or model selection based on MSE and distributional properties. 

 

Alternative Variance Estimation for Skewed Distribution using a Gamma Distribution 

Gamma Distribution  

 

The gamma distribution is one of the most commonly used distributions for modeling positively skewed data. Its 

probability density function (pdf), parameterized by shape and scale parameters (𝛼 and 𝛽), is highly flexible and 

can range from strongly skewed to nearly symmetric, depending on the values of these parameters (Evans et al. 

2000). The exponential distribution is a special case of the gamma distribution with 𝛼 = 1, while the chi-squared 

distribution with 𝑟 degrees of freedom is equivalent to a gamma distribution with 𝛼 = 𝑟/2 and 𝛽 = 2. The pdf of a 

gamma distribution is given by 

𝑓(𝑥) =  
1

Γ(𝛼)𝛽𝛼
𝑥𝛼−1𝑒

−𝑥
𝛽,    𝑥 > 0, 

where Γ(⋅) denotes the gamma function. The mean and variance of the gamma distribution are E(𝑋) = 𝛼𝛽 and 

Var(𝑋) = 𝛼𝛽2, respectively. 

 

When dealing with skewed data, fitting a gamma distribution to the observed sample and estimating the variance 

using the fitted parameters yields an estimator with significantly lower MSE than the conventional form of 

variance estimator 𝑆𝑑(𝑛)
2 . Maximum likelihood estimation (MLE) offers a robust approach for parameter 

estimation, although closed-form solutions for the gamma parameters do not exist and typically require numerical 

optimization. To provide an accessible alternative for undergraduate instruction, we adopt a practical 

approximation using closed-form solutions derived from generalized gamma likelihoods, thereby avoiding 

iterative methods such as Newton-Raphson. 

The gamma shape and scale parameters can be estimated using the following approximations (Ye & Chen 2017, 

Louzada et al. 2019): 

𝛼̂ =
𝑛∑𝑥𝑖

𝑛∑𝑥𝑖 ln 𝑥𝑖 −∑𝑥𝑖∑ ln 𝑥𝑖
     and      𝛽̂ =

1

𝑛2
 (𝑛∑𝑥𝑖 ln 𝑥𝑖 − ∑𝑥𝑖∑ ln 𝑥𝑖) 

The resulting estimator for the variance is given by 

𝜎̂2 = 𝛼̂𝛽̂ =
 𝑥̅

𝑛
 (∑𝑥𝑖 ln 𝑥𝑖 − 𝑥̅∑ ln 𝑥𝑖) 

Unlike 𝑆𝑑(𝑛)
2 , it does not depend on the squared deviation, but the averages of 𝑥𝑖’s,  ln 𝑥𝑖’s, and 𝑥𝑖 ln 𝑥𝑖’s. Although 

this estimator is biased, its variance is substantially smaller than that of the sample variance, especially for small 

samples. While bias correction is possible, the uncorrected form still shows outstanding performance and serves 

as a valuable pedagogical tool to illustrate the bias-variance trade-off in estimation. Moreover, estimating the 

parameters 𝛼 and 𝛽 of the gamma distribution requires only simple summary statistics such as ∑𝑥𝑖, ∑ln𝑥𝑖, and 

∑𝑥𝑖 ln𝑥𝑖, making it feasible to implement even in an introductory statistics course. Although the probability density 

function of the gamma distribution may initially appear challenging to students, this need not be a barrier. Just as 

we can teach analyses involving the normal distribution without delving deeply into its pdf in introductory courses, 
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students do not need a detailed understanding of the gamma pdf to effectively use the distribution for modeling 

skewed data. It is generally sufficient for students to know which parameters are involved and how to estimate 

them. 

 

Simulation study for MSE comparison  

 

To validate the performance of the proposed estimator empirically, we conducted a simulation study as follows: 

∘ Population Distributions: Exponential, Gamma, and Lognormal distributions 

∘ Sample Sizes: 𝑛 = 15, 30, 45, 60, 75, 100. 

∘ Parameter setting 

Distribution Parameters True Variance: 𝜎2 Kurtosis: 𝜅 Optimal 𝑑(𝑛) 

Exponential 𝜃 = 3 𝜃2 = 9 9 𝑛 + 7 

Gamma 𝛼 = 2, 𝛽 = 5 𝛼𝛽2 = 50 6 𝑛 + 4 

Lognormal 𝜇 = 1, 𝜈 = 0.575 (𝑒𝜈
2
 − 1) 𝑒2𝜇+𝜈

2
 = 4.03 12 𝑛 + 10 

∘ Variance Estimators for Comparison: 

(1) 𝑆𝑛−1
2 : Sample variance (Unbiased). 

(2) 𝑆𝑛
2: Method-of-moments variance estimator. 

(3) 𝑆2
opt: Variance estimator using the optimal 𝑑(𝑛). 

(4) 𝜎 2: Proposed gamma modeling-based variance estimator defined in (7). 

∘ Number of Replications: 𝑀 = 3000. 

∘ Simulation Procedure: 

(1) Generate a random sample {𝑥1,…,𝑥𝑛} from the specified distribution. 

(2) Compute 𝑆𝑛−1
2 , 𝑆𝑛

2, 𝑆2opt , and 𝜎 2. 

(3) Repeat steps (1)–(2) for 𝑀 replications. 

(4) Estimate the MSE of 𝑆𝑑(𝑛)
2 : MSÊ(𝑆𝑑(𝑛)

2 ) =  
1

𝑀
∑(𝑆𝑑(𝑛),𝑖

2 − 𝜎2)
2
 

(5) Estimate the MSE, squared bias, and variance of 𝜎 2: 

                        MSÊ(𝜎̂2) =  
1

𝑀
∑(𝜎̂𝑖

2 − 𝜎2)2,      

                        Biaŝ2(𝜎̂2) = (
1

𝑀
∑𝜎̂𝑖

2 − 𝜎2)
2

, and     

                        Var̂2(𝜎̂2) = MSÊ(𝜎̂2) − Biaŝ2(𝜎̂2), 

                where 𝑆𝑑(𝑛),𝑖
2

 
 and  𝜎 𝑖2 are the estimates obtained in the 𝑖-th iteration. 

 

Figure 4 shows the results for the exponential distribution with a scale parameter 𝜃 = 3, which is highly skewed 

with kurtosis 9. The optimal choice of 𝑑(𝑛) for 𝑆𝑑(𝑛)
2  is 𝑛 + 7 in this setting. The middle panel represents that 

although 𝑆2
𝑛+7 achieves slightly better MSE than the proposed estimator at 𝑛 = 15, its advantage diminishes with 

increasing sample size. The proposed estimator, in contrast, maintains a consistent reduction in MSE—

approximately 25%—across all sample sizes. From the right panel, we can see that the proposed variance 

estimator’s MSE is determined mainly by the variance, as it has almost no bias, implying that it is nearly unbiased. 
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Figure 4. MSE Comparison of Variance Estimators under the Exponential Distribution 

 

The results for the Gamma(2,5) distribution in Figure 5 exhibit a pattern similar to that of the exponential 

distribution shown in Figure 4. The estimator shows virtually no bias, with the variance comprising the dominant 

component of the MSE. Given that the Gamma(2,5) distribution has a kurtosis of 6, the optimal 𝑑(𝑛) is 𝑛 + 4. The 

MSEs of the proposed estimator and 𝑆𝑛+4
2  are nearly indistinguishable for small sample sizes. However, as the 

sample size increases, the proposed estimator demonstrates more stable and substantial reductions in MSE. 

 

 

Figure 5. MSE Comparison of Variance Estimators under the Gamma and Lognormal Distributions 
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Figure 5 also presents the MSE results under a lognormal distribution, which has higher skewness than the gamma 

distribution. Unlike the gamma distribution, the lognormal distribution exhibits a fundamentally different form of 

skewness. In particular, the lognormal distribution is widely used for modeling highly skewed data with extreme 

outliers, such as income distributions (Darkwah et al. 2016, Okamoto 2022). The kurtosis of the lognormal 

distribution depends solely on the scale parameter (𝜈) and is highly sensitive to its value. For example, with 𝜈 = 

0.575, as used in our simulation setting, the kurtosis is 12, but it increases drastically to 114 when 𝜈 = 1. Due to 

this sensitivity, even the sample mean, which is typically considered a reliable estimator, performs poorly under 

such distributions. 

 

As shown in the bottom-center plot of Figure 5, the proposed variance estimator, derived by approximating the 

distribution with a gamma distribution, achieves a 30–40% reduction in MSE compared to the sample variance. 

Moreover, it significantly outperforms the estimator based on the optimal 𝑑(𝑛) = 𝑛 + 10. Although the proposed 

estimator exhibits greater bias than in the gamma distribution case, the reduction in variance more than offsets the 

increase in bias, resulting in a notably lower overall MSE. This demonstrates the method’s robustness even for 

distributions with heavy tails, such as those common in economics and finance. 

 

Discussion and Conclusion  

 

The debate over using 𝑛−1 or 𝑛 as the denominator in the estimation of population variance is not merely a matter 

of determining which is correct or incorrect. Teaching students that only one option is right risks distorting their 

understanding of one of the most important concepts in estimation: the diversity of estimators. We argue that this 

issue should be addressed more comprehensively in statistics education by exploring estimator properties such as 

bias, variance, and mean squared error, as well as the principles behind choosing an estimator. 

 

In many cases, estimators of population variance take the form 𝑆𝑑(𝑛)
2 . When 𝑑(𝑛) = 𝑛−1, we obtain the traditional 

sample variance, which is an unbiased estimator but has relatively high MSE. The value of 𝑑(𝑛) that minimizes 

MSE depends on the kurtosis of the population distribution. If the sample size is not too small, the optimal value 

is approximately 𝑑(𝑛) = 𝑛 + 𝜅 − 2, where 𝜅 denotes kurtosis. Therefore, if minimizing MSE is the primary goal, 

it is reasonable to choose 𝑑(𝑛) based on the kurtosis of the underlying population. When the population 

distribution is unknown, using the sample kurtosis to select 𝑑(𝑛) can be a practical alternative. While estimators 

of the form 𝑆𝑑(𝑛)
2  perform well for symmetric distributions, they often exhibit poor performance for skewed 

distributions due to their sensitivity to outliers. In such cases, fitting a gamma distribution to estimate the variance 

may provide a more efficient alternative in terms of MSE and, in some situations, even yield an approximately 

unbiased estimator. 

 

Both 𝑆𝑑(𝑛)
2 -based and gamma-based variance estimators provide an excellent and intuitive framework for teaching 

foundational statistical concepts, including the diversity of estimators and the bias-variance trade-off. These tools 

enable students to visually explore how bias and variance vary with sample size and kurtosis and to understand 

how optimal MSE can be achieved. Ultimately, this serves as a powerful opportunity for students to learn how to 

choose among multiple estimators based on appropriate criteria. To support such instruction, we provide an 
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Appendix, including R codes, for hands-on simulation studies using normal and gamma distributions to explore 

the bias–variance trade-off. These simulations offer students a concrete, experiential understanding of parameter 

estimation from data. Since the bias-variance trade-off is a recurring concept in advanced data analysis, moving 

beyond the rigid convention of always using the sample variance can help students cultivate a deeper, more 

flexible understanding of statistical reasoning—an essential mindset in modern data science. 

 

Lastly, as a related experiment, we asked ChatGPT the following question:  

“Suppose we have a sample from a normal distribution with unknown mean and variance. What is the 

way to get the variance estimator with the smallest MSE?”  

ChatGPT compared only 𝑆𝑛−1
2 with 𝑆𝑛

2  and concluded that 𝑆𝑛−1
2   is unbiased but 𝑆𝑛

2  has a smaller MSE. When we 

followed up with a question,  

“What about using 𝑛 + 1 for a denominator?” 

ChatGPT responded that  

“Using 𝑛 + 1 as the denominator is uncommon and does not yield desirable statistical properties.” 

It continued, saying that 𝑛 + 1 leads to a greater underestimation of variance than 𝑛 and worsens both bias and 

MSE. However, we know that the answer given by ChatGPT is totally incorrect. As shown in Section 3, with a 

normal sample, although the variance estimator using 𝑛+1 has a larger bias than the one using 𝑛, it ultimately 

yields a smaller MSE due to a greater reduction in variance. So, we proposed an alternative perspective:  

“I think using 𝑛 + 1 produces a smaller MSE than using 𝑛.”  

After carefully re-evaluating the bias, variance, and MSE, ChatGPT ultimately agreed, stating:  

“You are correct: for certain sample sizes, especially small to moderate 𝑛, using 𝑛+1 can produce an 

estimator with lower MSE than using 𝑛.”  

Nonetheless, even this response is not entirely accurate. As demonstrated in Section 3, under the normal 

distribution, 𝑆𝑛+1
2   yields uniformly smaller MSE than 𝑆𝑛

2 regardless of the sample size. The detailed conversation 

with ChatGPT is provided in the Appendix. 

 

While we expect ChatGPT’s responses to improve over time, this example highlights that its current answers may 

still be inaccurate. This is likely not limited to this specific topic but may extend to similar statistical estimation 

problems. If students rely solely on ChatGPT for answers to such questions, there is a risk they may accept 

incorrect information as fact. Therefore, instructors should seize the opportunity to thoroughly address these topics 

in class, including a discussion of the limitations of current AI tools. Doing so not only ensures accurate 

knowledge transfer but also fosters in students a critical and creative approach to using AI in learning, rather than 

following it blindly. We believe this balanced approach is vital for empowering students in the era of AI-driven 

statistical analysis and data science education. 
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