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Abstract This paper presents a robust multi-objective optimal design (RMOP) of a passenger car with a semi-

active suspension system. The mean-effective values of the root mean square of the passenger’s head 

acceleration, suspension travel, and tire deflection are considered as design objectives. The passive components 

of the suspension and the design details of the Linear Quadratic Regulator (LQR) algorithm are used as design 

parameters. During the design, global sensitivity analysis is carried out using the Fourier Amplitude Sensitivity 

Test (FAST) to specify the elements of the model that can highly alter the design objectives. The mass of the 

passenger’s head and upper body, the mass of the passenger’s lower body and cushion, passenger and cushion’s 

elastic properties, and the sprung mass of the vehicle are selected for the sensitivity analysis. Results show that 

the design criteria are very sensitive to the variations in the sprung mass of the vehicle as compared to the other 

parameters. As a result, the variations in this parameter and passive elements of the suspension system are 

considered. Constraints are applied on the objectives in compliance with the requirements of ISO 2631-1 on the 

design of car suspension systems.  The optimization problem is solved by the NSGA-II (non-dominated sorting 

genetic algorithm II) and robust Pareto front and set are obtained. The Pareto set includes multiple design 

options from which the decision-maker can choose to implement. Responses of the passenger’s head 

acceleration, suspension travel, and tire deflection show that the robust multi-objective design algorithm 

(RMOA) is very effective and guarantees less sensitivity to the suspension passive elements. 

 

Keywords: multi-objective optimization, robust and optimal design, semi-active suspension system, 

commercial car, LQR 

 

 

Introduction 

 

Semi-active suspensions are automotive systems that control the damping force of the shock absorber in 

response to input from the continuously varying road surfaces. The design of such systems involves multiple 

and often conflicting criteria. Furthermore, the performance of these systems greatly impacted by the variations 

in their physical parameters. As a result, their design should be conducted in multi-objective settings that ensure 

a robust behavior. 

 

Several studies have been reported about the multi-objective optimal design of semi-active suspension systems. 

For example, a multi-objective design of a semi-active car suspension system with magnetorheological dampers 

is conducted by (Crews, Mattson, & Bucker, 2011). Two conflicting objective functions are selected: thermal 

performance and absorbed power. The control limitations are implemented on the control inputs which are taken 

as design variables. Skyhook, feedback linearization, and sliding mode controls are implemented and their 

performances are compared.  The optimization is performed by a multi-objective genetic algorithm to achieve 

the final Pareto frontier. The results showed that this approach was not able to accommodate real-time control 

solutions that would operate with the Pareto frontier. While (Anaya-Martinez, et al., 2020) evaluated a semi-

active suspension system with a magneto-rheological suspension system in electric vehicles. The main goal was 

to find a compromise solution between better road grip and ride comfortability. A switched reluctance motor 

was attached to the unsprung mass for engaging the spring and damper to reduce vibration. The simulation 

results obtained from pseudo bode plots showed that the skyhook and Mix one sensor controller provide the best 

enhancement in terms of the design goals. In another work, an optimal design of a semi-active suspension 

system is conducted by genetic algorithms (Koulocheris, Papaioannou, & Chrysos, 2017). The root-mean-square 

acceleration and the median of front and rear wheel travel were determined as cost functions. The damping 

coefficient of the suspension system and spring stiffness of the tire were chosen as the setup parameters. The 
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skyhook two-state damper control, skyhook linear approximation damper control, power-driven damper control, 

acceleration driven damper control, and mixed skyhook acceleration driving control were used as control 

algorithms.   

 

The study provided detailed comparisons among these techniques. Also (Khadr & Romdhane, 2016) employed a 

continuous skyhook control and modified skyhook control in the optimal control of a semi-active suspension 

system in two-wheeled vehicles. The root-mean-square of vertical acceleration of the chassis and the wheel 

dynamic load were selected as design targets to achieve the best comfort and the drive safety. The front and rear 

damping coefficients of skyhook dampers were defined as design parameters. The NSGA-II was used to solve 

the optimization problem. The multi objective optimization results exhibited that both control laws guarantee 

the highest comfort and dive safety. In another study, a linear quadratic regulator (LQR) and mixed H2/H∞ 

optimization control were employed in the optimal design of a semi-active suspension system (Ye & Zheng, 

2019).  The vehicle vertical acceleration, suspension travel, and wheel dynamic load were defined as control 

objectives. Numerical simulations were carried out by MATLAB/Simulink and compared with those of the 

passive suspension system. The performance of the closed-loop system under these control strategies showed 

improved comfort and road handling. However, (lazaro, Villegas, Ruiz, & Aldana, 2019) developed fuzzy and 

PID controls for a semi-active suspension system with magnetorheological damper. Passengers’ comfort, ride 

handling, and ground contact of the wheel were selected as control objectives. The results demonstrated that 

both control strategies were proven to be effective, but the fuzzy controller was the most acceptable in terms of 

comfortability. A Model predictive control (MPC) algorithm for vibration attenuation was applied on a semi-

active suspension system with a magneto-rheological (MR) damper (Mai, Yoon, Choi, & Kim, 2020). The 

vertical sprung mass acceleration and sprung mass displacement were defined as design objectives. Both bump 

and random excitations were used as inputs to test the performance of the controlled system numerically and 

experimentally. The results demonstrated that the algorithm successfully achieved the highest ride comfort and 

road handling for the semi-active suspension system with MR dampers.  An optimal control design of a semi-

active suspension system consisting of a magnetorheological shock absorber under both skyhook and linear 

quadratic regulators was presented by (Majdoub, et al., 2018). The chassis vertical travel and drive comfort were 

used as cost functions. The viscous damping coefficients and wheel stiffnesses were defined as design 

parameters. The numerical simulations obtained by MATLAB/ Simulink manifested that the performance of the 

suspension system under the linear quadratic regulator was better than that of the skyhook controller. In another 

work, an energy efficient look-ahead cruise controller integrated with adaptive semi-active suspension system 

was presented for a utility commercial vehicle by (Basargan, Mihály, Gáspár , & Sename, 2020). The 

optimization criteria were to minimize the horizontal control force and the velocity limits for achieving the 

occupant’s comfort and ride stability. The tire stiffness, damping rate of the shock absorber, and spring stiffness 

were used as design variables. The multi-criteria optimization problem was solved by the look-ahead estimation 

algorithm based on global positioning system. The results showed an improved vehicle adaptability based on the 

variations of the vehicle velocity. 

 

Based on the above literature review, designing a semi-active suspension system by considering more than one 

objective and uncertainties in its mechanical components, which undergo variations due to either manufacturing 

errors or operation, has not been investigated. Their values will certainly impact the performance of the 

suspension system. Robust multi-objective optimization technique, which aims to reduce the sensitivity of the 

design objectives to the uncertainties in the model parameters, is proposed to fill the above research gap in the 

literature.  

 

 

Robust Multi-Objective Optimization 
 

Multi-objective optimization problems (MOPs) have received much attention recently because of their 

enormous applications. A MOP can be stated as follows: 

 
  (1) 

 

Similarly, robust multi-objective optimization problems (RMOPs) can be stated as: 

 
  (2) 
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Where the superscript eff denotes the mean effective of the objective space. Thus, F and
 
are the maps that 

respectively consist of the objective functions and the mean effective objective functions 

 under consideration.  

 
  (3) 

 
  (4) 

is a q-dimensional vector of design parameters. The domain can in general be expressed by 

inequality and equality constraints or their mean effective values (for RMOPs). For MOPs, Q is given by 

 

  (5) 

 

Similarly, for RMOPs, Q reads 

 

  (6) 

Here, l and n denote respectively the number of the inequality and equality constraints. Mathematically,   is 

defined as: 

 

  (7) 

Where δ is the uncertainty vector with q elements, Bδ(K) is the hyper-volume generated by randomly varying K 

using δ as follows: [K −δ, K +δ]). Thus, a finite set of r solutions are randomly created within the perturbed 

range of K and then used to evaluate (Deb, K.; Gupta, H., 2006). 

 

RMOPs are more attractive than MOPs since they aim at finding less sensitive trade-offs among the design 

objectives. The solution of MOPs and RMOPs forms a set known as the Pareto set and the corresponding set of 

the objective values is called the Pareto front. The dominancy concept (Marler & Arora, 2004) is used to find 

the optimal solution. The MOPs and RMOPs are solved using multi-objective optimization algorithms. These 

methods can be classified into scalarization, Pareto, and non-scalarization non-Pareto methods (sardahi, 2016). 

 

The scalarization methods such as the weighted sum, goal attainment, and lexicographic approach require 

transformation of the MOP into a single optimization problem (SOP) (Pareto, 1971)), normally by using 

coefficients, exponents, constraint limits, etc.; and then methods for single objective optimization are utilized to 

search for a single solution. Computationally, these methods find a unique solution efficiently and converge 

quickly. However, these methods cannot discover the global Pareto solution for non-convex problems. Also, it 

is not always clear for the designer how to choose the weighting factors (Hernández, et al., 2013). 

 

Unlike the scalarization methods, the Pareto methods do not aggregate the elements of the objectives into a 

single fitness function. They keep the objectives separate all the time during the optimization process. Therefore, 

they can handle all conflicting design criteria independently and compromise them simultaneously. The Pareto 

methods provide decision-makers with a set of solutions such that every solution in the set expresses a different 

trade-off among the functions in the objective space. Then, the decision-maker can select any point from this 

set. Compared to the scalarization approaches, the Pareto methods can successfully find the optimal or near 

optimal solution set, but they are computationally more expensive. Examples of evolutionary algorithms that fall 

under this category are the MOGA (Multiple Objective Genetic Algorithm), PSO (Particle Swarm 

Optimization), NSGA-II (Non-dominated Sorting Genetic Algorithm), SPEA2 (Strength Pareto Evolutionary 

Algorithm), and NPGA-II (Niched Pareto Genetic Algorithm). Mainstream evolutionary algorithms for MOPs 

include NSGA-II, multi-objective particle swarm optimization (MOPSO) and strength Pareto evolutionary 

algorithm (SPEA). Deterministic methods such as set oriented methods with subdivision techniques, and multi-

objective algorithms based on the simple cell mapping (SCM) can be also used to find the solution set (sardahi, 

2016). 
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The ϵ−constraint method and the VEGA (Vector Evaluated Genetic Algorithm) are examples of the non-

scalarization non-Pareto methods. In the ϵ−constraint method, one of the cost functions is selected to be 

optimized and the rest of the functions in the objective space are converted into constraints by setting an upper 

bound to each of them. The VEGA works almost in the same way as the single objective genetic algorithm, but 

with a modified selection process. A comprehensive survey of the methods used for solving MOPs can be found 

in (Marler & Arora, 2004), and (Tian, Cheng, Zhang, & Jin, 2017). 

 

Semi-active suspension systems can be optimally designed by using any one of these techniques. The 

optimization problems of these systems are complex and nonconvex, therefore evolutionary algorithms are the 

methods of choice (Woźniak, 2010). They outperform classical direct and gradient based methods which suffer 

from the following problems when dealing with non-linear, non-convex, and complex problems: 1) the 

convergence to an optimal solution depends on the initial solution supplied by the user, and 2) most algorithms 

tend to get stuck at a local or sub-optimal solution. On other side, evolutionary algorithms are computationally 

expensive (Hu, Huang, & Wang, 2003). However, this cost can be justified if a more accurate solution is desired 

and the optimization is conducted offline. The most widely used multi-objective optimization algorithm is the 

NSGA-II (Sardahi & Boker, 2018). It yields a better Pareto front as compared to other algorithms (Gadhvi, 

Savsani, & Patel, 2016). Therefore, in this paper, we use the NSGA-II to solve the robust multi-objective 

problems. For numerical simulations, a mathematical model of a quarter passenger car is used.   

 

 

 Passenger Car Model 
 

A quarter car model of a passenger car implementing a semi-active suspension system is shown in Figure 1.  In 

the model, the passenger is modelled as a two-degree-of-freedom system by splitting the passenger’s body mass 

into two parts: mt and mp and they are connected by an assumed spring kt and damper ct. The cushion’s elastic 

properties are modeled as an equivalent spring kc and damper cc which couple mp to the sprung mass ms. The 

suspension system is modeled as a spring with constant ks, and damper with coefficient cs. The control force, 

u(t), is calculated by the LQR algorithm assuming that the vertical displacement of the sprung and un-sprung 

masses (zs and zu) and their first derivatives are available for feedback. The vertical displacement of the head 

and thorax zt, pelvis and cushion zp, and thier velocities are assumed to be unavialable and thuse not used in the 

control design. The driver and seat models are considered to add a more realsitic scenario to the design of the 

suspension system. In the figure, zr denotes the road excitation. By the first principle modelling, the dynamics of 

the system reads: 

 

 
Figure 1. Passenger Car Model with Semi Active Suspension System 

 

     (8) 
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      (9) 

      (10) 

                                         (11) 

If the seat and the driver are not included, the model reads 

      (12) 

                                         (13) 

Equations (8-11) will be used in the numerical calculations of the objective functions after coumputing the 

control gain vector using the state-space model of Equations (12-13) which is given by 

                                         (14) 

where,  is the state vector, A is the dynamic matrix, By is the input vector that shows 

the influence of road excitation on the system dynamics, and Bu is the control input vector. 

 

 

Control Design 
 

The control force, u(t), can be designed in different ways. One of the popular method methods in classical 

optimal control is the LQR. The control force is given by,  

                                         (15) 

The optimal state feedback control gain matrix Kf can be obtained by minimizing the following quadratic cost 

function: 

                                         (16) 

Where, S = S
T
 is a positive semidefinite matrix that penalizes the departure of system states from their 

equilibria, and R = R
T
 is a positive definite matrix that penalizes the control force. Using Lagrange multiplier-

based optimization method, the optimal Kf is given by 

                                        (17) 

The matrix can be calculated by solving the following Algebraic Riccati Equation (ARE): 

                                        (18) 

 

Inspecting Equations (17) and (18), we can notice that the choice of S and R will greatly affect the performance 

of the controlled system. Thus, these weighting matrices need to be tuned. Traditionally, S and R are chosen 

based on the expert of the control system designer and tweaked iteratively to achieve the design requirements. 

Arbitrary settings of S and R may result in non-optimal performance. Many works have been proposed about 

establishing systematic approaches for calculating S and R. For example, Bryson developed a method for 

selecting these matrices, but his method shows only how the initial values should be selected and the designer 

still needs to tune the elements of S and R for optimal performance (Bryson, 2018). Other examples can be 

found in (Oral, Çetin, & and Uyar, 2010) and (El Hajjaji & Ouladsine, 2001). Therein, analytical methods for 

selecting S and R for second order and third-order systems were developed. So, these techniques cannot be used 

to calculate S and R for the control algorithm applied to the semi-active suspension system because of its 

dimensionality. Hence, we suggest a numerical approach to tackle this problem.   

 

 

Robust multi objective optimization optimal design (RMOD)  
 

We consider the RMOD for the semi-active suspension system. The design vector reads  

.   (19) 
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The variables ks, cs and ky are the passive elements of the suspension system shown in Figure 1. The variables 

S1,...,S4 are on the diagonal of S, and R is the control force weighting factor. The constraints on the design 

parameter space are given by 

 

   

 

(20) 

The upper bounds of S1... S4, and R are chosen so that the penalties on the departures of the states from their 

desired positions and control utilization are high. The upper and lower bounds of ks, cs and ky were chosen 

according to the work presented in (Nagarkar, Patil, & Patil, 2016).  

 

The tire stiffness depends on the inflation pressure and road temperature. It also varies from one manufacturer to 

another. Furthermore, ky changes due to wear while it is in service.  To account for these factors, ky is allowed to 

undergo 10% variations  (Loyer & Jézéquel, 2009), where . The spring and damping 

coefficients of the suspension system will degrade during the service due to aging and wear and their values will 

decrease over time. To simulate these variations, ks and cs uncertainties are defined as follows  

.   (21) 

The design parameters defined in Equation (19) with their constraints given in Equation (20) and by considering 

are tuned to concurrently satisfy three objectives:   

   (22) 

Where, and  are respectively the mean-effective values of the suspension stroke , 

the tire deflection , and head acceleration . Mathematically, they are given by  

 

 (23) 

 

 (24) 

                                                                                                        (25) 

Here, y is one of the perturbed and randomly created solutions that makes the hyper-volume Bδ(K) (See the 

Robust Multi-Objective Optimization Section for more details). The superscript RMS denotes the root-mean-

square operation. The RMS of and read 

 

 (26) 

 

 (27) 

 

 (28) 

Here, T represents the duration of measurement. It is obvious that the environmental and operational 

variabilities of and can be simulated by considering their uncertainties  and . But the question 

is: can the variations in the other system parameters, namely  and alter the design 

objectives?  To answer this question, sensitivity analysis should be conducted.  
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Global Sensitivity Analysis (GSA)  

 

Global sensitivity analysis (GSA) is conducted by the Fourier Amplitude Sensitivity Test (FAST), which is one 

of the most popular uncertainty and sensitivity analysis techniques. GSA allows for the sensitivity analysis to be 

examined over the complete solution domain rather than a local approximation around the nominal value. The 

FAST algorithm is a computationally efficient method which based on Monte Carlo sampling. The algorithm 

employs a peridic sampling method and a Fourier transformation to calculate the variance of the input 

parameters so that the most influential parameters may be identified. The reader can refer to the work by  (El-

Sharkawy, 2014) for more details about this method.  

 

In this paper, the uncertainties of , and are set to  to simulate the fact that different drivers with 

different dynamics may drive the same car. Since their values decrease over time, the seat spring and damper 

 are allowed to vary between and , respectively. The sprung mass fluctuates 

due to the variation of car occupants and luggage. Following the work of Loyer and Jézéquel (Loyer & Jézéquel, 

2009),  is assumed to undergo 10% variations . The sensitivity indices of the seven parameters 

are demonstrated for the RMS of the three design objectives.  

 

Furthermore, the sensitivities of the objectives are evaluated at different levels of the control force. Figures 2-7 

show the sensitivity indices when u(t) is large (LQR algorithm’s 

settings: ) and it is small (LQR settings: 

).  It is evident from these figures that and are mainly affected by 

the variations of  and; but is recording the highest impact. The other four parameters 

and have almost no effect on and .  

 

 
Figure 2. Sensitivity Indices of the Input Paramters on when u(t) is large. 

 

 
Figure 3. Sensitivity Indices of the Input Paramters on when u(t) is small. 
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Figure 4. Sensitivity indices of the input paramters on when u(t) is large. 

 

 
Figure 5. Sensitivity indices of the input paramters on when u(t) is small. 

 

 
Figure 6. Sensitivity indices of the input paramters on when u(t) is large. 

 

 
Figure 7. Sensitivity indices of the input paramters on when u(t) is small. 

 

In a similar fashion, the sensitivity indices of the model variables are calculated for at large u(t) and small 

u(t) and are depicted in Figures 6 and 7, respectively. The figures demonstrate that is insensitive to these 

elements since the sensitivity indices are extremely small.  
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To sum up, it is obvious that the deviations in will certainly influence the values of two cost functions from 

the selected three design objectives. As a result, is varied during the optimization to find less sensitive and 

robust solution to the optimization problem at hand.   

 

 

Optimization Setup 
 

To solve the RMOP at hand , the NSGA-II is used. During the optimization, the population size is set to 50 and 

the maximum number of function evaluations is set 1000. For the robust solution, a finite set of 20 solutions are 

randomly created within the neighborhood of the nominal values of , and . Then, the mean effective 

values of the objective functions are calculated. The quarter-car model is simulated with MATLAB using 

ode15s for 10 seconds with a step size of 10 millisecond. During the numerical simulation, the nominal value of 

is set to 290 kg. According to (Gündoğdu, 2007) and (Kuznetsov, Mammadov, Sultan, & Hajilarov, 2011), 

other parameters can be set to: kg, kg, N/m,  N.s/m 

, N/m , and  N.s/m.  Following the work of Shirahatti and his colleagues (Shirahatti, Prasad, 

Panzade, & Kulkarni, 2008), the road profile  (see Equation 29) is chosen as a sinusoidal shape having two 

successive depressions of depth m, and length m  when the vehicle velocity m/s.  

                                                                                                      
 (29) 

Under these conditions, the robust multi-objective optimization problem is solved and its solution in terms of 

the robust Pareto front and set are obtained.  

 

 

 Results and Discussion  

 

Projections of the robust Pareto front are shown in Figures 8 and 9. The robust trade-offs between the effective-

mean of the head acceleration and that of the suspension deflection are depicted in Figure 8, while those 

between the suspension deflection and tire deflection are plotted in Figure 9. Both projections exhibit competing 

relationships among the design objectives. For instance, by inspecting Figure (8), we notice that decreases 

as goes up. Similarly, goes down as  increases. The competing nature of these objectives stresses 

out the fact that these objectives need to be handled in multi-objective settings. Projections of the corresponding 

Pareto sets are graphed in Figure 10. The optimal passive components (cs versus ks and the color is mapped to 

the value of ky) are depicted in Figure 10-a. The subplot shows that higher values of cs are associated with higher 

levels of ky. While the active design parameters of the suspension systems are plotted in 10-b and 10-c. The 

color in these subfigures is mapped to the level of the control penalizing factor, R. These subplots demonstrate 

that the weighting elements of the LQR algorithm fall within their feasible ranges and different optimal 

solutions can be found by adjusting them optimally.  In order to show the robustness of these solutions, time-

domain profiles of the suspension deflection, tire deflection, and head acceleration at random point from the 

Pareto set are discussed next.  

 

 
Figure 8. Robust Optimal Pareto Front of the Mean-effective Value of the Head Acceleration versus Suspension 

Deflection 
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Figure 9. Robust Optimal Pareto Front of the Mean-effective Value Tire Deflection versus Suspension 

Deflection 

 
Figure 10. Robust Pareto Set (a) the color is mapped to the value ky (b) & (c) the color is mapped to the value of 

the control weighting factor R 

 

 
Figure 11. Time Response of Suspension Deflection at the Lower Levels of the Suspension Passive Elements 

 

 
Figure 12. Time Response of Suspension Deflection at the Upper Levels of the Suspension Passive Elements 
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The profiles of the suspension deflection at the lower and upper values of and are shown in Figures 

11 and 12.  The responses manifest little deviations from the ideal response (labeled original in the legend). The 

sprung spring and damping constants seem to have more impact on the profile as compared to the other 

parameters. This is expected since they tie up the sprung mass to the tire. The variables and have less 

impact on as shown in these figures. Inspecting the profiles of the tire deflection shown in Figures 13 and 14 

at different conditions, we notice that the response is insensitive to variations in and , and slightly deviate 

from its ideal profile when and are degraded  Similarly, the passenger head acceleration (see Figures 15 and 

16) show little corrupt from its ideal response when the passive elements of the suspension are perturbed. This 

emphasizes the importance of the robust design of semi-active suspension systems to ensure that the 

performance criteria do not largely deviate after implementation.  

 

 
Figure 13. Time Response of Tire Deflection at the Lower Levels of the Suspension Passive Elements 

 

 
Figure 14. Time Response of Tire Deflection at the Upper Levels of the Suspension Passive Elements 

 

 
Figure 15. Time Response of Head Acceleration at the Lower Levels Of the Suspension Passive Elements 
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Figure 16. Time Response of Head Acceleration at the Upper Levels of the Suspension Passive Elements 

 

 

Conclusion 
 

We have studied the robust multi-objective design of a semi-active suspension system used in a commercial car. 

The optimization problem with 8 design parameters and 3 objective functions is solved by the NSGA-II 

algorithm. The sprung mass of the vehicle, tire stiffness, and suspension stiffness and damping constants are 

assumed to be uncertain and varied during the optimization to account for their variability. The robust Pareto 

set, and front are obtained. The Pareto set includes multiple design options from which the decision-maker can 

choose to implement. Time profiles of the design objectives show that the robust multi-objective design 

algorithm is very effective and guarantees less sensitivity to the suspension passive components. 
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