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Abstract: Word vector representations open up new opportunities to extract useful information from 

unstructured text. Defining a word as a vector made it easy for the machine learning algorithms to understand a 

text and extract information from. Word vector representations have been used in many applications such word 

synonyms, word analogy, syntactic parsing, and many others. GloVe, based on word contexts and matrix 

vectorization, is an effective vector-learning algorithm. It improves on previous vector-learning algorithms. 

However, the GloVe model fails to explicitly consider the order in which words appear within their contexts. In 

this paper, multiple methods of incorporating word order in GloVe word embeddings are proposed. 

Experimental results show that our Word Order Vector (WOVe) word embeddings approach outperforms 

unmodified GloVe on the natural language tasks of analogy completion and word similarity. WOVe with direct 

concatenation slightly outperformed GloVe on the word similarity task, increasing average rank by 2%.  

However, it greatly improved on the GloVe baseline on a word analogy task, achieving an average 36.34% 

improvement in accuracy.  
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Introduction 

 

Word embedding is the process of representing words as vectors of real numbers. These vectors can be used in 

many applications, such as document indexing (Hofmann, 2017), query expansion (Gauch & Chong, 1995), 

document classification (Lilleberg, Zhu & Zhang, 2015). Early approaches to vector representations for words 

created word-document co-occurrence matrices (Schütze & Pedersen, 1997).  These vectors have high dimensions 

and can be very sparse, an issue addressed by Latent Semantic Analysis (LSA) (Deerwester et al., 1990) which 

performs single value decomposition on word-document matrix. (Finch & Chater, 1992) and (Gauch, Wang & 

Rachakonda, 1999) developed word embeddings based on word-word co-occurrences. Given the computational 

limits of the time, they dealt with the high dimensionality (and sparseness) of the context matrix by limiting the 

dimensions of the vectors to a set of context-words.  
 

Current approaches employ neural network-based models to learn word vectors. Mikolov and his team proposed 

the skip-gram and continuous-bag-of-words models using a single hidden layer of neural network (Mikolov et 

al., 2013a,b). (Peters et al., 2018) presented a word embedding algorithm called ELMo that uses the Recurrent 

Neural Networks (RNN). ELMo considers the context of a word in a sentence. This mechanism helped 

producing different vectors for the same word and made ELMo different from the traditional word embedding 

algorithms. The most recent work in the field of word embeddings uses a new mechanism called the 

transformers. These transformers leverage a simple network architecture based on the concept of attention 

mechanisms. BERT (Devlin et al., 2019), GPT-2 (Radford et al., 2019), and CTRL (Keskar et al., 2019) are 

examples of recent algorithms that uses transformers to find best word embeddings. 

 

In this paper, we improve the results of a traditional word embedding algorithm called the Global Vectors for 

word representations (GloVe). GloVe was proposed by (Pennington, Socher & Manning, 2014). This algorithm 

combines the advantages of matrix factorization of the word-word co-occurrence methods with local context 

windows. GloVe showed good results comparing to many traditional vector learning models. During our 

investigation of this algorithm, we found that the GloVe model fails to consider word position explicitly. When 
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constructing the word-word co-occurrence matrix, increments are decreased based on their distance from the 

pivot word, but there is no other consideration taken. In this work, we introduce Word Order Vectors (WOVe) 

that extends the GloVe model by adding explicit representation of word position within the context window. 
 

 

Related Works 
 

There has long been an interest in learning the meaning of words from the corpora in which they appear.  Early 

approaches were based on the idea that a word can be defined from the documents in which they appear (Jones, 

1971), and others assume that words can be determined from the contexts around them (Miller & Charles, 

1991). Currently, word embedding algorithms have become a very active area of research, resulting in neural-

based methods such as word2vec (Mikolov et al., 2013b), GloVe (Pennington, Socher & Manning, 2014), 

ELMo (Peters et al., 2018). However, the new era of word embedding uses the transformers that showed 

promising results comparing to the neural-based models. These models have the ability to speed up the training 

process a way from the traditional word embedding training processes. (Radford et al., 2019) reported that their 

model, GTP-2, that uses the transformer mechanism, was able to provide state-of-the-art results with a zero-shot 

setting over 7 language modelling datasets. 

 

For the GloVe algorithm, several approaches have been proposed to improve on its performance. Some 

approaches use explicit information to incorporate larger contexts by adding morphological information 

(Bojanowski et al., 2017; Nugaliyadde et al., 2019; Gupta et al., 2019; Ibrahim et al., 2020), and others did 

implicit updates incorporating different techniques (Mikolov et al., 2013b).  (Bojanowski et al., 2017) used the 

n-gram technique to create vectors from the word characters rather than words themselves. Similarly, (Gupta et 

al., 2019) used the kernel principal component analysis (KPCA) to enrich word embeddings with semantic and 

syntactic information. (Nugaliyadde et al., 2019) enhanced word vectors with word relationships. (Ibrahim et al., 

2020) boosted the weights of target words on the co-occurrence matrix to increase the chance of finding their 

similar words on a healthcare corpus. In contrast, (Mikolov et al., 2013b) did not affect the word vectors 

directly. However, it improved the word embedding model by adding techniques such as using the negative 

sampling technique. 

 

Our research is closer to (Bojanowski et al., 2017) and (Gupta et al., 2019) by adding more information to the 

vector. However, we improve GloVe algorithm by explicitly considering word position in the context of pivot 

word similar to (Gauch, Wang & Rachakonda, 1999). 

 

 

Word Order Vectors 
GloVe 

 

Glove is one of the unsupervised learning algorithms that builds vectors to represent words in a corpus 

(Pennington, Socher & Manning, 2014). GloVe starts by constructing a global word-word co-occurrence matrix 

within a context window of a specific size, e.g., ±10. The value added for the word pair decreases as a function 

of distance, so that word pairs that are d words apart contribute 1/d to the total count. GloVe uses a global log 

bilinear regression model to learn word vectors in a lower dimensionality space. It avoids the sparsity of the 

global co-occurrence matrix by running only on nonzero entries. GloVe has been shown to outperform other 

models on word analogy, word similarity and named entity recognition tasks. 

 

 

Context Word Vectors 

 

(Gauch & Futrelle, 1994) developed a positional context vector approach that they used for disambiguation and 

to classify words into their parts of speech.  This work was adapted to learn word similarities that were shown to 

effectively identify related words for automatic query expansion (Gauch, Wang & Rachakonda, 1999). A major 

feature of this work was the use of a separate co-occurrence counts for context word observations at each 

position within the context window. By incorporating word position, the resulting words were ordered by 

syntactic as well as semantic similarity. 

 

 

Word Order Vectors (WOVe) 

 

Our goal is to combine the previous two approaches by enhancing GloVe to explicitly incorporate word 
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positions. We modified GloVe to create a word-word co-occurrence matrix for a given position within a context 

window, e.g., ±2.  We then had GloVe create positional word vectors for each position within the context 

window around the pivot word, w. We developed and evaluated three different methods of using the vectors 

GloVe as described below. 

 

Direct Concatenation 

 

In this method, the dimensionality of the vectors is the same for each positional word vector and the regular 

GloVe word vectors. The positional word vectors are concatenated to create the final word vectors. Thus, if the 

size of the GloVe vector is k and the context window size is c, the resulting word vector would have 

dimensionality ck. 

 

Reduced Concatenation 

 

Because we create c word co-occurrence matrices, each is based on only 1/c word appearances rather than the c 

word appearances used by GloVe in its single matrix.  This method addresses this data sparsity and the increased 

vector size that the direct concatenation method produces by creating positional word vectors of length k/c.  

Thus, after concatenation, the final word vectors are length k as is the case with unmodified GloVe. 

 

 

Weighted Direct Concatenation 

 

The concatenation methods do not take into account the possibility that words closer to the pivot word are more 

likely to be related to it.  Similar to GloVe, the weighted concatenation method decreases the contribution of 

each positional word vector proportionally by its distance from the pivot word, w.  Thus, each positional word 

vector has its weight multiplied by 1/d where d is that position’s distance from w, prior to concatenation.  

Because our early results showed that direct concatenation greatly outperformed reduced concatenation, we only 

evaluated proportional weightings for that algorithm. 

 

 

Evaluation 
Experiment Settings 

 

The methods proposed in this paper were evaluated using 8.7 GB of text randomly selected from a 2019 corpus of 

Wikipedia text (“enwiki dump progress on 20190920”). The dataset was cleaned by removing XML tags, 

punctuation, and whitespace characters other than spaces between words. After that, the text is tokenized and 

downcased. The resulting dataset contained a total of 1,372,327,637 tokens. 

 

We used the basic GloVe architecture reported in (Pennington, Socher & Manning, 2014) as the baseline against 

which we compared our algorithms. We did not compare WOVe with other word embedding algorithms such as 

Word2Vec (Mikolov et al., 2013b), vLBL (Mnih & Kavukcuoglu, 2013), and others because (Pennington, Socher 

& Manning, 2014) already reported that GloVe outperformed many of these algorithms. We also did not compare 

with the current state-of-the-art embedding algorithms such as BERT (Devlin et al., 2019), and ELMO (Peters et 

al., 2018) because these algorithms are bidirectional algorithms while WOVe is a single word embedding 

algorithm.  

 

We evaluated our system on two tasks: (1) word analogy task and (2) word similarity task. The word analogy task 

consists of 14 sets of analogies selected from the dataset that comes with the GloVe code (“GloVe: Global Vectors 

for Word Representation”).  These were comprised of 19,544 analogies that should be answerable given a large 

corpus of Wikipedia data. They contain analogies such as “Chicago is to Illinois as Dallas is to Texas,” and “Boy is 

to girl as father is to mother,”. These analogies evaluate both syntactic and semantic of the words in the corpus. 

Equation 3 used to assess analogies: 

A + B – C = D (2) 

where A, B, C, and D are vectors that GloVe and its improved versions should create. We evaluated the algorithms 

using accuracy, i.e., the percent of the time that the word embedding predicted the correct answer (D in equation 2) 

given A, B, and C. 

 

For the similarity task we collected five different datasets that contained human generated synonyms for words 

((Miller & Charles, 1991) MC, (Rubenstein & Goodenough, 1965) RG, WordSim353 (Agirre et al., 2009), 

Stanford’s Contextual Word Similarities SCWS (Huang et al., 2012), and Stanford’s Rare Word Similarity Dataset 
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RW (Luong, Socher & Manning, 2013). These contained 1+ synonyms for each target word. We measured the 

average rank of the synonyms that algorithms find within range of ten most similar words to every test word. 

 

In the baselines and all the proposed methods, words with frequency less than five were excluded. The word 

embeddings vector size was fixed at 100 dimensions and the context window size varied from 2 to 10, using 

positions ±1 to ±5. Other GloVe parameters were set to the best setting reported in (Pennington, Socher & 

Manning, 2014). 

 

 

Results and Discussion 
 

Table 1 shows the number of correct analogies that GloVe and each of the positional enhancements were able to 

predict and the associated relative improvements for the WOVe methods versus the GloVe baseline. From these 

results, we see that direct concatenation, the best WOVe algorithm, improves GloVe’s baseline by an average 

36% across all tested context window sizes. This method also finds the most correct analogies, 8892, with a 

context size of ±4., although the context size of ±5 with 8891 correct performs almost identically. 

 

Weighting the word contributions by distance also improves the accuracy versus the baseline, but by a smaller 

amount.  We suspect that this is because the positions are accounted for in the separate vectors so adding 

weights has little effect on the outcome. Finally, the reduced concatenation model underperforms GloVe badly, 

decreasing accuracy by an average 70.36% relative, no doubt because each of the position vectors is mapped 

into fewer and fewer dimensions as the context window sizes increase. 

 

Table 1. #Correct predictions and relative improvement for GloVe and WOVe with context windows from ±1 to 

±5. 

Algorithm 1 2 3 4 5 Average 

GloVe 2709 5314 6532 7096 7089 5748 

Direct Con 

RelImprov 

4273 

57.73% 

7516 

41.43% 

8517 

30.38% 

8892 

25.31% 

8891 

25.42% 

7617 

36% 

Reduced Con 

RelImprov 

1559 

-42.45% 

577 

-89.14% 

103 

-98.4% 

22 

-99.69% 

3 

-99.9% 

452 

-85.93% 

WtDirect Con 

RelImprov 

4336 

60.05% 

6383 

20.11% 

6273 

-3.96% 

6978 

-1.66% 

7238 

2.10% 

6241 

15.32% 

 

Table 2 shows the results of comparing our best WOVe algorithm to GloVe on the word synonym task. We 

compared the rank of the true synonym, from 0..9, in the list of 10 most similar words generated by each 

approach. If the human-generated synonym did not appear in the algorithm-generated list, it was assigned a 10 

to denote that it was not found. In general, WOVe algorithm improved GloVe’s baseline by an average 2% 

across all similarity datasets using a window size of ±4. The lowest rank (best results) occurred using 

wordsim353, with rank of 9.12, a 4% improvement. On average, WOVe found eight more synonyms than 

GloVe, a 34% improvement. The largest difference between the two algorithms in the number of synonyms 

discovered was 17 synonyms for the RW dataset with 46% improvement. 

 

Table 2. Average rank and the number of synonyms that GloVe and WOVe found for different similarity 

datasets with window size ±4. 

Algorithm MC RG WordSim-353 SCWS RW Average 

GloVe 

    Avg rank 

    Synonyms 

9.40 

4 

9.62 

4 

9.47 

24 

8.72 

316 

9.9 

37 

 

9.424 

77 

Direct concatenation 

    Avg rank  

    Synonyms 

 

9.14 (3%) 

5 (25%) 

 

9.47 (2%) 

(75%) 

 

9.12 (4%) 

29 (21%) 

 

8.64 (1%) 

330 (4.5%) 

 

9.8(0.03% 

54 (46%) 

 

9.248 (2%) 

85 (34%) 

 

 

Conclusion and Future Work 
 

The main goal of this research was to incorporate word order into GloVe word embedding algorithm. We present 

three word order vector (WOVe) methods: direct concatenation, reduced concatenation, and weighted direct 
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concatenation. We found that WOVe with direct concatenation slightly outperformed GloVe on the word similarity 

task, increasing average rank by 2%.  However, it greatly improved on the GloVe baseline on a word analogy task, 

achieving an average 36.34% improvement in accuracy.  For future work, we suggest fine-tuning of the WOVe to 

find not only word embeddings but also sentence embeddings and compare it with state-of-the-art sentence 

embedding algorithms. 
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