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Abstract: Pulmonary embolism (PE) can impede the normal flow of blood, which can result in reduced oxygen 

levels in vital organs and be life-threatening. Therefore, early detection and treatment of PE can effectively reduce 

mortality. Computed tomography pulmonary angiography (CTPA) is the clearest and most immediate tool 

available for PE diagnosis. With an increase in the CTPA image quality and number of slices, physician fatigue 

associated with interpreting these images during the diagnostic process has also increased. Therefore, this study 

proposes a modified two-stage convolutional neural network-based approach to automatically detect areas 

suspected of containing PE in CTPA images to reduce the burden of diagnosis on doctors. The main functions for 

eliminating false positives include principal component analysis, enlarged feature map (EFM), and probability-

based anchor point extraction (PAE). Experimental results showed that although EFM can slightly improve the 

accuracy for small-object detection, it significantly increases the time required for training. PAE can reduce the 

training time and slightly improve detection accuracy. But the simultaneous use of EFM and PAE can significantly 

increase sensitivity (10.57%) with an increase of only 29 min in the training time. 
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Introduction 

 

Pulmonary embolism (PE) is a phenomenon wherein the pulmonary artery or its small blood vessels are blocked 

by an embolus comprising air, fat, or blood clots. In the United States, an average of 1 in every 500 people annually 

suffers from PE, and 11% of them die within one hour of its onset. Without treatment, the average mortality rate 

of PE is approximately 30%. Hence, PE is a common condition with high morbidity and mortality that requires 

early and accurate diagnosis, and treatment with thrombolytics or anticoagulants, which can effectively reduce 

mortality by approximately 2–8% (Goldhaber and Bounameaux, 2012). Therefore, early and accurate PE 

diagnosis is an extremely crucial and challenging task for physicians. 

 

Computed tomography pulmonary angiography (CTPA) is one of the most important and detailed techniques for 

examining the blood vessels inside the lungs. It can show whether the blood vessel itself is abnormal (stenosis, 

blockage, rupture, etc.). CTPA can also show the relative position of the lesion and blood vessels, and the 
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distribution of blood vessels inside the lesion. A CTPA image can serve as an important basis for helping doctors 

diagnose and treat PE cases (Figure 1). 

 

 

Figure 1. Computed Tomography Pulmonary Angiography Image (González et al., 2020) 

 

Radiologists typically detect dark areas of PE in CTPA images by manually circling contours; however, this 

process is time consuming. Moreover, it is difficult to determine the blood vessel boundary owing to noise or 

artifact interference, and experienced experts may be required to interpret them clearly. Therefore, a computer-

aided detection (CAD) system is required to assist doctors during interpretation. This study proposes a modified 

two-stage convolutional neural network (CNN) approach from Yang et al. (2019) to automatically detect areas 

suspected of containing PE in CTPA images. In the proposed method, the candidate cubes that may belong to the 

embolism region are first extracted from the original 3D image based on the image features. 

 

 A distribution model is then established for the original image based on the PE probability. Thereafter, the 

enlarged feature map (EFM) corresponding to more positive anchor points with better quality is extracted from 

the candidate region to facilitate subsequent detection. The entire process can improve the PE detection accuracy 

without increasing the time required. The remainder of this paper is organized as follows: Section 2 contains a 

literature review, Section 3 details the research methods used in this study, Section 4 presents an analysis of the 

experimental results, and Section 5 concludes the paper. 

 

Literature Review 

 

Most traditional PE detection methods rely on the professional judgment of doctors. Generally, the blood flow in 

the peripheral lobe during vascular embolism is lower than that in the normal area. Therefore, if a detailed and 

accurate description of the pulmonary lobe blood flow distribution can be obtained, PE occurrence and the scope 

of its impact can be identified. Qanadi et al. (2000) used traditional double-helix computed tomography (CT) to 

analyze whether embolism occurred in major blood vessels, such as the pulmonary artery. Among 158 patients, 

147 were correctly diagnosed (93%). But the diagnostic accuracy rate of CT for microvascular embolisms is not 

ideal.  
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A study by Michiels et al. (2005) conducted on 53 patients pointed out that the accuracy rate was only 60% (32 

patients), while pulmonary artery computed tomography angiography can increase the accuracy to 94% (50 

patients). Nicholas and Harvey (2003) stated that there are two main reasons for the low sensitivity of traditional 

CT for diagnosing PE. First, there are numerous thin blood vessels in the pulmonary lobes, and their volume is 

too low to be easily observed. Therefore, the diagnosis must be performed carefully, and the visual fatigue and 

misjudgment of a radiologist can easily increase.  

 

Second, the information corresponding to each CT image contains the description of the actual thickness of the 

lungs from 2–5 mm, which may be offset by breathing or heartbeats, causing the finer branch vessels to produce 

shadows with low grayscale values similar to emboli in the image and resulting in misjudgment. Therefore, after 

a comprehensive analysis of the research results of these scholars, we decided to use pulmonary artery computed 

tomography angiography images as the original image data source. 

     

There are several unwanted areas in CTPA images that can easily affect the CAD training process, such as the 

outer ring of the ribs and spine. No blood vessels are present in these skeletal areas, and it is unlikely that emboli 

will be present in these areas. Therefore, it is necessary to perform image segmentation to remove unnecessary 

areas and reduce the amount of calculation required. Several methods exist for segmenting lung blocks using 

image processing technology. Some utilize features around the lungs or diseases located in the lungs to determine 

the location of the lungs. For example, Park et al. (1998) proposed using the distribution characteristics of the 

trachea as the basis for segmentation. Dajnowiex and Alirezaie (2004) utilized the state of air circulation in the 

lungs as their characteristic appearance.  

 

Blechschmidt et al. (2001) used emphysema appearance as a characteristic of the lungs of patients. Yongbum et 

al. (2001) and Augusto et al. (2001) first used the detection of small pulmonary nodules as features to determine 

the location of the lungs in an image. They then used other image processing and artificial intelligence techniques, 

such as contour search and neural networks, to segment the lungs in the images. Regarding automatic 

segmentation, methods have been proposed by Margarida et al. (2006) and Xu et al. (2005) to automatically 

segment lung regions using multiple active contours and outlier models. After comparing the various methods 

proposed by these scholars, we decided to use the active contour model (ACM) to segment the lung area and 

remove unnecessary areas from the image. 

 

Traditional CAD systems for detecting PE usually include four stages: (1) extracting regions of interest (ROI) 

from the original image by performing lung or blood vessel segmentation; (2) using algorithms to select probable 

PE candidates in these ROIs; and (3) manually extracting features from each probable PE candidate and using a 

rule-based classifier. Subsequently, a neural network or k-nearest neighbor classifier computes a confidence score 

for each candidate.  

 

Several studies have proposed different CAD systems for PE diagnosis; however, they all have serious limitations. 

For example, although the systems proposed by Masutani et al. (2002) and Pichon et al. (2004) achieved 

sensitivities of 100% and 86%, respectively, they were trained with only a small number of PE images (21 and 
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22, respectively); therefore, it was impossible to determine the degree of generalization. Another system proposed 

by Das et al. (2003) achieved a sensitivity of 88%, but it is unclear how well it performs on all PE images because 

the image samples used in their study only considered embolization images with vessel endings.  

 

The sensitivity of the system proposed by Digumarthy et al. (2006) was 92%. However, their study only used 

images with good shading and no obvious motion artifacts or other lung diseases as the original image sources; 

hence, the system performance for other more representative imaging data remains unknown. Maizlin et al. (2007) 

performed a test using the same system with more representative imaging data, which showed 58% less sensitivity. 

Unlike previous studies, the study by Buhmann et al. (2006) was the only one to use a large dataset (352 images) 

containing respiratory artifacts and parenchymal lung disease imaging data. They did not exclude images based 

on the size or location of the thrombus and considered all types of thrombi. Their experimental results were poor, 

with a sensitivity of only 47% and 52% and an average number of false positives being 3.9 and 11.4 in the training 

and testing datasets, respectively. The visualization method proposed by Kiraly et al. (2006) also achieved only 

50% sensitivity, which is not significantly different from the former. The above-mentioned manually produced 

feature representations have limited capabilities and usually result in a high number of false positives to achieve 

an acceptable sensitivity. 

 

Recently, new algorithms for PE detection have been proposed. For example, Wang et al. (2012) proposed a 

pulmonary vascular tree segmentation algorithm for lung segmentation to improve the CAD performance for PE 

detection. Their method achieved a sensitivity of 62.5%, while reducing the false-positive rate by 16.2%. Liang 

and Bi (2007) applied the sled algorithm to mark the pixels belonging to PE in the image and used multi-instance 

classification to assist CAD in PE detection. They achieved a sensitivity of 80% in the best case, with four false 

positives in each dataset. Ozkan et al. (2014) proposed a novel method for detecting PE in CTPA images that uses 

vessel segmentation and a rule-based classifier. Their method yielded eight false positives for each dataset and 

the best case sensitivity of approximately 62%. 

 

Although the aforementioned scholars used different feature representation methods that are superior to manual 

ones, they may still generate numerous false positives, which imposes a heavy burden on subsequent steps. In this 

study, we combined all steps, including the PE region extraction method, image processing to align the blood 

vessels, and elimination of false positive candidates, through a modified two-stage CNN to achieve high accuracy 

while avoiding additional time and space consumption. 

 

Research Methods 

 

This study established an automated detection method to automatically detect areas suspected of containing PE in 

CTPA images using a modified two-stage CNN. A flowchart of the process is shown in Figure 2. First, the CTPA 

images are read from the PE challenge database. The system then pre-processes the expert-interpreted images and 

executes a modified two-stage CNN. The performance of the system was also evaluated against other PE detection 

methods. 
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Figure 2. Flowchart of the Modified Two-Stage PE Detection Network 

 

Image Preprocessing 

 

In an original CTPA image, the CT value is generally used to represent the intensity of a pixel in Hounsfield units 

(HU). However, general computer monitors are incompatible with this range; therefore, the image must be 

converted to a 256 grayscale resolution. The higher the CT value of the image, the higher the tissue density. If the 

CT value is less than 0 HU, it appears black in the image. When the CT value is greater than 1000 HU, it appears 

bright white in the image. The bright white parts indicate the surrounding ribs and vertebrae with high-density 

values and the arteries near the center. At this stage, image processing methods are used to enhance the contrast 

and segment the lung area. Image segmentation not only reduces unnecessary computation, but also improves the 

identification of suspicious areas in the image. 

 

Contrast Enhancement 

 

Because the thin blood vessels around the lung lobes are not obvious in an original image, this study used a cubic 

curve to enhance the image (Domingo et al., 2000), which is shown in Figure 3. It can be observed that the curve 

contains an inflection point TP3. By controlling the position of TP3, the curve can be bent to different degrees to 

adjust the image. Equation (1) was used to calculate the cubic adjustment curve, where x is the pixel value in the 

original image and y is the pixel value of the image after adjusting the curve. Because the curve must pass through 

two points (0, 0) and (255, 255), the value of d can be deduced as 0. 

 

𝑦 = 𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑                                                         (1) 
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Figure 3. Appropriate Compensation Curve 

 

Next, the following formulas were used to deduce the cubic adjustment curve required to adjust the image: 

Equation (5) defines the inflection point in the cubic curve, where I is an image and x is the pixel value of any 

point in I. Point A was used to find other unknown variables to derive the cubic compensation curve required to 

adjust the image. The calculation methods for all variables in the curve are shown in Equations (2)–(5), where 

𝑚𝑖𝑛𝑥∈𝐼 and 𝑚𝑎𝑥𝑥∈𝐼 represent the smallest and largest pixel values in the image, respectively. 

 

𝑐 = 1 − 𝑎 × (255)2 − 𝑏 × 255                                                           (2) 

 

𝑏2 = 3 × 𝑎 − (255)2 × 3𝑎2 − 255 × 3 × 𝑠 × 𝑏                                            (3) 

 

𝑎 =
1

(225)2−3×255×𝐴+3×𝐴2                                                              (4) 

 

𝐴 = 𝑚𝑖𝑛𝑥∈𝐼{𝑥} + 0.7{𝑚𝑎𝑥𝑥∈𝐼{𝑥} − 𝑚𝑖𝑛𝑥∈𝐼{𝑥}}                                            (5) 

 

Lung Region Segmentation 

 

The ACM is a framework used for extracting object contour lines from 2D images that may contain noise. It 

involves establishing an initial curve on the image first; the shape is not restricted, but the target object must be 

wrapped inside the contour line. Several equations must then be established, including those for the standard curve 

and contour line of the target object. During this process, finding the minimum value of the formula for the 

standard curve shape can cause the curve to continue shrinking towards the inside of the outline and maintain a 

smooth state. Finding the minimum value of the formula for the closeness of the standard curve to the contour of 

the target object should be continued until the two overlapping objects can maintain the curve close to the target. 

 

To reduce the time required for the removing unnecessary image regions, this study used ACM to circle the lung 

regions in the CTPA images. Before using the ACM method, a circle of control points must be set outside the 

lung area. Each segment of the control points is then connected in series with a cloud-shaped curve (B-spline 

curve) to form the most primitive outline. The image used in this study comprised 4096 grayscale values, and the 

parts with brighter grayscale values in the image indicate structures with higher density, such as the ribs and 

vertebrae. The darker parts of the image indicate structures with lower density, such as the lungs, and the gray 



International Journal on Engineering, Science and Technology (IJonEST) 

350 

level of fat, which lies between the bone and air. Therefore, this study used these features to set the contour points 

of the lungs by combining the projections of the grayscale value in the x- and y-axes directions. After the contours 

were generated, the angles obtained during the edge detection process were used to gradually converge the lung 

region in the image based on the ellipse shape. 

 

Probability-based two-stage CNN 

 

This study used a modified two-stage CNN proposed by Yang et al. (2019) as the framework for detecting PE, 

which is illustrated in Figure 4. The first stage uses a 3D fully convolutional network (FCN) for extracting 

candidate regions (which may be PE targets). The second stage extracts 3D candidates after the blood vessel 

alignment. The 2D cross sections of these cubes were fed into a probability-based ResNet-18 classifier to eliminate 

false positives. 

 

 

Figure 4. Framework of the probability-based two-stage CNN 

 

Stage 1: Extracting Candidate Regions 

 

The goal of the first stage is to obtain high sensitivity with a reasonable number of false positives. To fully use 

the 3D image information from the CTPA images, a 3D FCN was used to extract the feature hierarchy from the 

3D images to obtain the candidate regions. As shown in the upper part of Figure 5, the 3D FCNs are connected to 

each other through the encoder and decoder with residual connections. The encoder begins with a 3D 

convolutional layer, followed by a max-pooling layer and four other residual modules in sequence to encode 

feature maps hierarchically. The decoder then up-samples the feature maps using two deconvolutional layers, a 

residual module, and two convolutional layers. Residual connections are used to connect the last two residual 

modules in the encoder and the corresponding residual modules in the decoder.  
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In addition to visual features, location information is an important indicator for identifying PE. Because PE is 

usually located in fixed areas, such as the main pulmonary artery or lobar branches, it is also necessary to input 

location information and combine it with decoding. Additionally, the FCN feature maps in the generator are 

combined. Specifically, a 3-channel location map is created in the second deconvolution layer (i.e., 24 × 24 × 24), 

having the same size as the FCN feature map. Each voxel of the position map is a 3D vector responsible for 

displaying the x-, y-, and z-coordinates in the entire 3D space. Next, the network directly connects the 3-channel 

location map with the 64-channel FCN feature map, which passes from the residual connection to create a 131-

channel feature map. The residual module is then used to connect the feature maps for information fusion. 

 

To select candidate regions from the fused 3D feature map, cubes with anchor points (reference points when the 

convolution kernel slides) were input into the network responsible for extracting candidate regions for accurate 

detection. Note that the lesions may vary in size. Specifically, a cube with anchor points is a predefined multiscale 

3D window whose center is located at the position of each voxel in the feature map. This study assigned three 

cubes with anchor points for each voxel location.  

 

Each cube had a distinct size ratio s (10, 30, and 60 mm). Five regression variables were set for each cube with 

anchor points representing the position of the cube (∆𝑥𝑠, ∆𝑦𝑠 , ∆𝑧𝑠) and size (∆𝑑𝑠, 𝑝𝑠), to calculate these five 

values. They were responsible for defining the location and space occupied by the candidate region in the entire 

lung volume with the probability that the candidate region contains PE. Subsequently, based on s, the position 

and size offset values of the candidate regions with anchor points were regressed and trained. To achieve this, the 

entire network architecture first applied a 3D convolutional layer with 64 kernels of size 1 × 1 × 1 each to the 

fused feature maps, followed by another 3D convolutional layer with 15 kernels (each kernel of size 1 × 1 × 1) to 

output feature maps of size 24 × 24 × 24. Each voxel of the feature map output during the research process was a 

5N-dimensional vector, expressed as (∆𝑥𝑠, ∆𝑦𝑠 , ∆𝑧𝑠, ∆𝑑𝑠, 𝑝𝑠), where N = 3. 

 

Stage 2: Eliminating False Positives 

 

The second stage aims to eliminate as many false positives as possible using the classifier while maintaining high 

sensitivity. This is a very challenging task, as the first stage may select several false-positive candidate regions, 

resulting in a severe imbalance between the positive and negative samples. Moreover, owing to the differences in 

the orientation, size, and shape of PEs, the 2D cross-sectional images of all possible candidate regions may 

noticeably differ in appearance.  

 

Using 3D classifiers can overcome the problem of appearance variation to some extent; however, owing to the 

lack of sufficient 3D samples to train 3D classifiers, the entire research process is severely limited by the amount 

of training data. To solve these problems, this study referred to an image representation method for aligning blood 

vessels proposed by Tajbakhsh et al. (2015). This method uses principal component analysis (PCA) of 3D image 

information to create the candidate and affected areas. The orientation of the vessels is aligned to reduce the 

appearance of PE in 2D cross-sectional images. 
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Principal Component Analysis 

 

The image processing process first crops a small ROI cube containing PE (PE-ROI) from the candidate region. 

The cube is then binarized with intensity thresholding. According to the experience of radiologists, normal blood 

vessel wall image intensity values are higher than 100 HU, while that of other tissues are lower than 100 HU. 

Because PE introduces a filling defect (a dark area surrounded by bright vascular lumen) in CTPA images, the 

image intensity value of PE will be slightly lower than that of blood vessels. In this study, 70 HU was used as the 

threshold value for binarization.  

 

During the binarization process, voxels with image intensities higher than 70 HU were marked as blood vessels, 

whereas the other pixels were set to 0 to indicate non-vessel parts. PCA was then applied to the binarized cubes 

to calculate the orientation of vessel segments in them. The specific method involves extracting three eigenvectors 

(𝑣1, 𝑣2, 𝑣3) and their corresponding eigenvalues (𝜆1, 𝜆2, 𝜆3), where 𝜆1 ≥ 𝜆2 ≥ 𝜆3 . According to the physical 

significance of the eigenvectors, 𝑣1 represents the direction in which the blood vessel extends, and 𝑣2 and 𝑣3 

represent two orthogonal directions perpendicular to the 𝑣1 plane. Then, according to (𝜆1, 𝜆2, 𝜆3), a 3D affine 

transformation matrix 𝐴𝜃 was defined to apply the 3D rotation transformation to the cube as follows:  

 

[
𝑥𝑠

𝑦𝑠

𝑧𝑠

] = 𝐴𝜃 [

𝑥𝑡

𝑦𝑡

𝑧𝑡

1

] = [

 𝑠𝑥𝑒1
𝑇𝑣1 

𝑠𝑥𝑒2
𝑇𝑣1

𝑠𝑥𝑒3
𝑇𝑣1

 

𝑠𝑦𝑒1
𝑇𝑣2 

𝑠𝑦𝑒2
𝑇𝑣2 

𝑠𝑦𝑒3
𝑇𝑣2  

𝑠𝑧𝑒1
𝑇𝑣3  

𝑠𝑧𝑒2
𝑇𝑣3  

𝑠𝑧𝑒3
𝑇𝑣3  

𝑡𝑥

𝑡𝑦

𝑡𝑧 

] [

𝑥𝑡

𝑦𝑡

𝑧𝑡

1

]                                               (6) 

 

where (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡)  denote the cube coordinates after vessel alignment, and (𝑥𝑠, 𝑦𝑠, 𝑧𝑠)  denote the original 

coordinates of the cube. During the study, all coordinates were normalized to [-1, 1], that is, -1 < 𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡t < 1 

and -1 <𝑥𝑠, 𝑦𝑠, 𝑧𝑠 < 1. 𝑡𝑥,  𝑡𝑦, and 𝑡𝑧 represent the offset values of the cube relative to the center of the entire blood 

vessel; 𝑠𝑥, 𝑠𝑦, and 𝑠𝑧 represent the scaling ratios between the cube and blood vessel; and 𝑒1, 𝑒2, and 𝑒3 represent 

the identity matrices. 

 

Once the vessel-aligned cube was obtained, two 2D cross-sectional images of the cube were extracted, including 

longitudinal and cross-sectional images, as input images for the probabilistic ResNet-18 classification network. 

Figure 5 briefly illustrates the entire vessel alignment procedure, where (a) shows a voxel around an embolus, (b) 

shows a PE-ROI cube, (c) shows the beginning of PE-ROI PCA to determine vessel axis 𝑣1 (blue arrow) and two 

orthogonal directions (𝑣2 and 𝑣3), (d) depicts the use of 𝑣1, 𝑣2, and 𝑣3 to form a planar image of the cross-section 

(shown in blue) and a planar image of the longitudinal section (shown in green), (e) shows the multiple 

longitudinal and cross-sectional planes obtained by rotating 𝑣2 and 𝑣3 around 𝑣1, and (f) shows the division of 

the rotated planar images into two structures. Finally, the emboli are generated by randomly selecting one planar 

image from the transverse section and two planar images from the transverse section, as shown in (g). 
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Figure 5. Vessel Alignment Process 

 

Enlarging the Feature Map 

 

In the process of selecting candidate regions, unless the intersection over union (IoU) between the anchor and 

ground truth is the highest, or the IoU between the anchor and ground truth is greater than a threshold t, it is 

considered a negative anchor. A positive anchor is responsible for participating in the loss calculation. However, 

during the research process, it was discovered that the number of positive anchor points was very small and their 

quality was poor, resulting in a high number of false positives in the extracted candidate regions. Therefore, the 

sampling stride must be adjusted to obtain more positive anchor points. 

 

As shown in Figure 6, assuming that both the anchor point and ground truth are square, the side lengths of the 

anchor point and ground truth are 𝑆𝑎 and 𝑆𝑔, respectively. To make the IoU value between the anchor point and 

ground truth greater than the threshold t, the sampling stride length d should satisfy 

 

(𝑆𝑎+𝑆𝑔−𝑑)
2

/4

𝑆𝑎
2+𝑆𝑔

2−(𝑆𝑎+𝑆𝑔−𝑑)
2

/4
≥ 𝑡                                                                     (7) 

 

 

Figure 6. Minimum IoU 

 

In Equation (7), the minimum value on the left-hand side of the inequality is satisfied only when the ground truth 

lies in the middle of the four adjacent anchors. Moving the ground truth in any direction increases the IoU value. 
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However, considering the irregular shape of the PE as an example, most positive anchors and ground truths fail 

to satisfy Equation (7). Therefore, the sampling stride must be reduced by enlarging the enlarging feature map 

through up-sampling. The relationship between the sampling stride length and the up-sampling scale should 

satisfy the following: 

 

𝑑 = 𝑤𝑖𝑚𝑎𝑔𝑒/(𝑤𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ∗ 𝑆)                                                                (8) 

 

where d is the sampling stride length, 𝑤𝑖𝑚𝑎𝑔𝑒 is the input image width, 𝑤𝑓𝑒𝑎𝑡𝑢𝑟𝑒 is the feature map width, and S 

is the up-sampling scale. Up-sampling the feature map not only makes the extracted anchors denser but also 

enriches local details, which is beneficial for small object detection such as PE. 

 

Modeling Probability Distributions 

 

By up-sampling the feature map, the matching success rate of the anchor points and ground truths can be 

improved. However, the EFM occupies significant memory space, which increases the amount of subsequent 

computation. Therefore, this study used an anchor-point extraction method based on the probability of PE vascular 

distribution features, which can reduce the time and space consumption required by the EFM and improve the 

detection performance for small objects, such as PE. 

 

Generally, PE-ROIs rarely appear randomly in the entire image. Most PE-ROIs are concentrated on both sides of 

the mid-axis, where the pulmonary artery and its branches are located. Therefore, extracting anchors with different 

densities can easily correspond to the ground truth. Hall et al. (2020) established a probability model to describe 

the probability of PE-ROI features in each voxel of the image. In their model, the probability distribution was 

modeled using a Gaussian mixture model (GMM), which is defined in Equation (9). Given a random variable X, 

GMM can be expressed as 

 

𝑝(𝑋) = ∑ 𝜋𝑘
𝑘
𝑘=1 𝒩(𝑥|𝜇𝑘, ∑ )𝑘                                                                    (9) 

 

where 𝒩(𝑥|𝜇𝑘, ∑ )𝑘  is the Gaussian distribution, that is, the k-th component in the mixture model, and 𝜋𝑘 is the 

mixture coefficient that satisfies the following conditions: 

 

∑ 𝜋𝑘
𝑘
𝑘=1 = 1 and  0 ≤ 𝜋𝑘 ≤ 1                                                                 (10) 

 

In this study, X is a two-dimensional random variable representing the center position of the PE-ROI. The 

probability of a PE-ROI feature appearing in each pixel of the image can be calculated using Equation (9). The 

PE-ROI distribution can be expressed as a combination of two Gaussian distributions, that is, k = 2. The 

expectation maximization algorithm is then used to calculate the unknown parameters (𝜋𝑘, 𝜇𝑘, ∑ )𝑘  in Equation 

(9). Finally, the probability distribution of the PE-ROI in each coordinate is obtained. 
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Using the probability distribution, a candidate region can be sampled from the image to extract anchor points. 

First, the k-th Gaussian distribution is selected based on the mixture coefficient value. Subsequently, a coordinate 

is randomly selected based on the selected Gaussian distribution. If the selected coordinates are duplicates, they 

are rejected. Next, the position information is extracted from the obtained candidate anchor points, and then 

numerous samplings are performed. 

 

By combining the EFM and probability-based anchor extraction strategies, the network framework can effectively 

improve the detection performance for small objects, such as PE. Specifically, the feature map is first up-sampled 

to enrich the local details of small objects and then anchor points with a higher density are extracted to enlarge 

the feature map. The feature map establishes a candidate region and performs anchor-point extraction on it. This 

approach can not only extract anchor points closer to the ground truth but also reduce the time and space required 

owing to the feature map enlargement. 

 

Training Process 

 

In this study, the objective function of the network for extracting candidate regions is defined as 

 

𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖

∗)𝑖 + λ
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗)𝑖                                       (11) 

 

where the classification loss 𝐿𝑐𝑙𝑠 is the binary cross-entropy loss, and the regression loss 𝐿𝑟𝑒𝑔 is the smoothing of 

the 𝐿1 loss. Both are normalized by the minimum batch size 𝑁𝑐𝑙𝑠 and number of anchor positions 𝑁𝑟𝑒𝑔, weighted 

by λ. It is important to note that 𝐿𝑟𝑒𝑔 works only for positive anchors. i represents the i-th anchor in the mini-

batch; 𝑝𝑖  and 𝑝𝑖
∗  represent the probability of being predicted as PE and the ground truth label (𝑝𝑖  = {0,1}), 

respectively; 𝑡𝑖 and 𝑡𝑖
∗ represent the predicted and ground truth position with the association of a positive anchor, 

respectively. This position comprises the following four parameters: 

 

Δx = (𝑥 − 𝑥𝑎)/𝑑𝑎, Δy = (𝑦 − 𝑦𝑎)/𝑑𝑎,                                                        (12) 

 

Δz = (𝑧 − 𝑧𝑎)/𝑑𝑎 and Δd = log (d/𝑑𝑎),                                                            (13) 

 

where（x, y, z, d）are the center coordinates of the predicted or ground truth cube and its side length, and 

(𝑥𝑎, 𝑦𝑎, 𝑧𝑎, 𝑑𝑎) are the center coordinates for the cube with anchor points and its side length. 

 

To collect training samples for the first-stage network, a binary class label was assigned to each anchor. An anchor 

was marked as positive if it overlapped with a ground truth and its IoU was greater than 0.5, whereas it was marked 

as negative if its IoU was less than 0.02 compared to all ground truths. Anchors that were neither marked as 

positive nor negative were not used for training. This study used hard example mining during training by randomly 

selecting M negative samples in each mini-batch and ranking them in descending powers based on their 
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classification scores. Calculating the objective function by selecting the top k samples in the ranking as samples 

for hard mining is helpful. 

 

The first-stage 3D FCN was pretrained on the LUNA16 dataset. In this study, the first stage of the model was 

trained for 100 epochs using a stochastic gradient descent (SGD) optimizer with a learning rate of 1e-3, 

momentum of 0.9, and weight decay of 1e-4. To train the second-stage ResNet-18, the SGD optimizer was used 

with a momentum of 0.99 and an initial learning rate of 1e-4. The learning rate was reduced by a factor of 10 after 

every 30 epochs during training. ResNet-18 was trained for approximately 100 epochs until convergence. 

 

The objective function of the second-stage network was a cross-entropy loss function with softmax. False positive 

anchors based on the output of the first stage were collected as training data for the second stage. If the center of 

the candidate cube generated by the first-stage network did not fall on any ground-truth mask, the candidate cube 

was marked as a negative sample for training. Conversely, if the center of a candidate cube fell on the ground-

truth mask, the candidate cube was marked was a positive sample for training. To alleviate the problem of severe 

imbalance in the numbers of positive and negative samples, the positive samples were augmented by scaling, 

randomly translating, and rotating the original cubes, and then extracting candidate cubes that aligned with the 

blood vessels from these cubes. Specifically, a random scaling of 𝑁𝑠 times was performed in the range of 15–35 

mm, a random translation of 𝑁𝑡 times was performed in the range of -5–5 mm, and a random rotation of 𝑁𝑟 times 

was performed around the 𝑣1 axis. During random translation, it was ensured that the center of the candidate cube 

that was moved still lay on the ground-truth mask. Therefore, each positive training sample could be eventually 

increased by 𝑁𝑝 = 𝑁𝑠 × 𝑁𝑡 × 𝑁𝑟 in the second stage. 

 

During data augmentation, 𝑁𝑠 was set to 3 (i.e., 15, 25, and 35 mm) and the cross-sections of all candidate cubes 

were resized to 32 × 32 to enable easy input into ResNet-18. During the translation operation, the candidate cube 

was moved 𝑁𝑡 = 4 times in a random direction within a 5 mm range. For the rotation operation, 𝑁𝑟 was set to 5. 

Therefore, the positive training samples of the second-stage network increased by a factor of 60. In the entire 

architecture, two stages of training were conducted: training the first-stage network until convergence, and then 

training the second-stage network based on the output of the trained first-stage network model. 

 

Performance Evaluation 

 

The performance of the probability-based two-stage CNN was evaluated using free-response operating 

characteristic curves. The detection result was considered positive if the detected position was within the three 

localization error ranges of the ground-truth mask (i.e., 0, 2, and 5 mm). Figure 7 illustrates the assessment of the 

localization error using a raw CTPA image containing a PE. The upper-left image shows a saddle embolus in the 

pulmonary artery, the upper right image shows the reference standard when the positioning error is 0 mm (i.e., 

the ground truth), the lower left image shows the reference standard when the positioning error is 2 mm, and the 

lower right image shows the reference standard when the positioning error is 5 mm. The masks for these 

positioning errors were manually delineated by two radiologists having more than ten years of interpretation 
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experience on all CTPA images in the PE Challenge database, and were used as a reference standard during 

training and testing. 

 

Figure 7. Three Positioning Error Ranges for Ground Truth Masks (González et al., 2020) 

 

Sensitivity was used as the evaluation index. Sensitivity, also known as the true positive or recall rate, refers to 

the proportion of actual positive samples that are predicted to be positive. It can be calculated as follows:  

 

Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                      (14) 

 

where TP and NP are the numbers of true positives and false negatives, respectively. To further examine the 

effectiveness of each part of the probability-based two-stage CNN, the following four controlled experiments 

were performed using the strategy proposed by the research method through the analysis of control variables: (1) 

using only the original two-stage CNN; (2) using a modified two-stage CNN, including two strategies of EFM 

and PAE; (3) using a modified two-stage CNN and only the EFM strategy; and (4) using a modified two-stage 

CNN and only the PAE strategy. 

 

Experimental Design and Analysis 

 

The hardware used for this study included a personal computer with an Intel Core(TM) i7-10750H 2.60 GHz 

CPU, 16GB of RAM, and an NVIDIA GeForce GTX 1650M GPU. Ubuntu 14.04 was used as the operating 

system and Python 3.7 as the programming language, which included the Pytorch 0.4.0, TensorFlow 1.10.0, Keras 

2.0.8, scikit-image, and OpenCV packages. 

 

Database 

 

The CTPA images used in this study were sourced from the PE Challenge database, which contains clinical data 

obtained from six different local hospitals. The radiology research center used was Unidad Central de 
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Radiodiagnóstico, Madrid, Spain. The CTPA image dataset contains 235 emboli, with a mean size of 3.43  103 

± 8.6  103 mm3 (minimum size = 8.63 mm3, maximum size = 6.34  104 mm3). The minimum and maximum 

numbers of emboli in each case were 1 and 21, respectively (González et al., 2020). 

 

The database comprised 3,438 CTPA images with PE, which were sorted according to the medical record number 

of the patient (ID) and slice order. Moreover, this database is accompanied by annotations, such as the embolism 

position and size in each image, which can be used to evaluate the effect of image processing. These images were 

divided into two parts: training set (1,978 images from 20 patients) and test set (1,460 images from another 20 

patients). During the experiment, using the same patient data for training and testing was avoided. 

 

Preprocessing 

 

The grayscale value range of the images used in the experiment was between -2048 and 2048. First, the grayscale 

value range was adjusted to be between 0 and 4095, and the resolution of the image was 512 × 512. The slice 

thickness was set to 1 mm. CTPA images from 40 patients were used in the experiment. Each patient had a dataset, 

and each dataset contained approximately 250–280 images, but not every image contained a PE. After screening 

each dataset, only approximately 30–50 images containing PE were obtained. Figure 8 (a) shows the normalized  

CTPA image, wherein the overall contrast is still low. A cubic curve was used to enhance the contrast of the entire 

image, the result of which is shown in Figure 8 (b). In addition to increasing the brightness difference between 

the general pulmonary artery and PE, thin blood vessels in the pulmonary lobe can also be highlighted, thereby 

reducing the difficulty of detecting PE. 

 

 

Figure 8. Contrast enhancement 

 

Figures 9 (a) and (b) show the projection results of the grayscale value of the image in the x- and y-axes directions, 

respectively. The ACM then uses these distribution features in combination with grayscale values to determine 

the contours of the lung region. 
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Figure 9. Projection Results of Grayscale Value Distribution 

 

After the contour was generated, the angle obtained in the edge detection process was used to gradually converge 

the lung block of the image based on the ellipse shape. Figure 10 (a) shows the original CTPA image, and (b) 

shows the ACM using the angle obtained in the edge detection process to gradually converge the image of the 

lung block based on the ellipse shape. After performing ACM, the area included in the range could be segmented, 

such as in the image of the main blood vessel area shown in Figure 10 (c). After obtaining the lung area framed 

by the ACM, the connected element algorithm was used to obtain the required area, as shown in Figure 10 (d). 

 

Figure 10. Working of the Active Contour Model 

 

Probability-Based Two-Stage CNN 

 

In the testing phase, the first stage of the probability-based two-stage CNN generated 2,687 PE-ROIs, of which 

672 were true PEs and 2,015 were false positives. For each patient, the average number of false positives in the 

first phase of the network was 39.44. After aligning the blood vessels in the cube covering the PE through PCA, 

the emboli appearance was interpreted more consistently than the original irregular shape by using two types of 

images as representations. As can be observed in Figure 11, in the case wherein the appearance of almost all 

emboli is different, the PCA results represent the PE covered by the blood vessel as both elongated longitudinal 

and cross-sectional structures. The orientation of the vessels is different, and the original transverse appearance 

does not exhibit this characteristic. Consistent image appearance is key for accurately training CAD systems. 

Figure 11 (a) shows the transverse (left), coronal (middle), and sagittal (right) slice images of the original PE 

cubes in the three cases. It can be observed that they all appear different. Figure 11 (b) shows the longitudinal 

(left, middle) and cross-sectional (right) slices after vessel alignment. 
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Figure 11. Vessel Alignment 

 

In the second stage, the three feature maps generated through PCA were input into ResNet-18 to extract the 

anchors, and the size of the feature maps was 32 16. Therefore, according to the sampling stride length definition 

in Equation (8), the sampling stride length of the three feature maps is (8, 16, 32). However, at this sampling stride 

length, the quality and quantity of positive anchors are scarce. As presented in Tables 1 and 2, in ResNet-18, when 

t in Equation (7) is equal to 0.7, the average number of positive anchor points is 2.01. When the IoU of all the 

positive anchor points is greater than 0.7, the proportion is only 12.58%. This is because numerous anchors are 

identified as positive because they have the largest IoUs (but t < 0.7) between them and the ground truth, and not 

because the condition of IoU > 0.7 is met.  

 

Table 1. Average Number of Positive Anchors at Different Sampling Stride Lengths and IoU Thresholds 

 Average number of positive anchors 

Sampling stride t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9 

ResNet-18 3.41 2.67 2.01 1.65 1.52 

(1, 2, 4) 20.32 11.71 6.94 6.05 5.56 

(1, 4, 4) 29.75 15.34 8.02 7.57 6.98 

(1, 4, 8) 45.27 25.96 12.39 10.24 9.65 

(2, 2, 4) 32.59 19.24 7.22 6.41 5.84 

(2, 4, 4) 12.33 7.43 4.58 3.92 3.46 

(2, 4, 8) 11.89 6.01 3.72 3.43 3.17 

 

Excessive distance between positive anchors and ground truth adversely affects the detection results. The error 

between the anchor and ground truth can be considered a linear error only when they are sufficiently close; 

otherwise, it is considered to be a complex nonlinear problem. While enlarging the feature map, as the sampling 

stride decreases, the number of positive anchors gradually increases. As can be observed from Tables 1 and 2, 

when the sampling stride of the three feature maps is (1, 4, 8), the average number of positive anchor points is 

12.39, which is nearly six times that of the original, and the number of positive anchors is 12.39. The proportion 

of anchor points with an IoU greater than t also increased to 35.70%; however, the sampling stride is not as small 
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as possible. As the sampling step shrinks, the magnification of the feature map increases exponentially, which 

may result in memory overflow. 

 

Table 2. The Ratio of Positive Anchor Points Greater than t under Different Sampling Stride Lengths and IoU 

Thresholds 

 

To obtain the correct number of positive anchors, the threshold t was set to 0.5. As can be observed from Tables 

1, 2, and 3, when t is equal to 0.5, and the sampling stride length is (1, 4, 8), the average number of positive 

anchors is 45.27 and the proportion of points with an IoU greater than 0.5 is 98.69%. Compared with ResNet-18, 

the EFM method achieved a higher proportion of positive anchors with IoU values greater than 0.5. This proves 

that the anchor points extracted using the EFM method are closer to the ground truth. 

 

Table 3. Average IoUs of Positive Anchors at Different Sampling Stride Lengths and IoU Thresholds 

 Average IoU of positive anchors 

Sampling stride t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9 

ResNet-18 0.52 0.53 0.55 0.56 0.56 

(1, 2, 4) 0.55 0.56 0.57 0.57 0.55 

(1, 4, 4) 0.56 0.57 0.57 0.56 0.56 

(1, 4, 8) 0.59 0.58 0.58 0.57 0.57 

(2, 2, 4) 0.57 0.59 0.62 0.59 0.58 

(2, 4, 4) 0.55 0.61 0.58 0.58 0.57 

(2, 4, 8) 0.56 0.59 0.61 0.58 0.58 

 

 By obtaining the probability distribution, the false-positive anchor points can be removed from a region in the 

image. First, the k-th Gaussian distribution is selected based on the value of the mixture coefficient, and then a 

coordinate is randomly selected based on the selected Gaussian distribution. If the selected coordinates are 

duplicates, they are excluded. Subsequently, the position information is extracted from the anchor points in the 

obtained image, and then a significant number of samplings are performed. This makes it easy to extract anchors 

that match the ground truth. Figure 12 (a) shows the location distribution of the center points of all PE-ROIs in 

the training set, and (b) shows the Gaussian mixture model established from these center points. 

 Ratio of positive anchors greater than t 

Sampling stride t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9 

ResNet-18 81.31% 26.88% 12.58% 0.92% 0.19% 

(1, 2, 4) 93.53% 54.57% 28.15% 1.43% 0.47% 

(1, 4, 4) 95.07% 49.19% 32.72% 2.97% 0.51% 

(1, 4, 8) 98.69% 47.58% 35.70% 3.67% 0.79% 

(2, 2, 4) 98.49% 52.65% 31.26% 2.73% 0.64% 

(2, 4, 4) 95.38% 49.14% 26.84% 2.83% 0.43% 

(2, 4, 8) 95.63% 45.58% 25.09% 3.53% 0.31% 
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Figure 12. (a) Location Distribution of PE-ROIs and (b) the Established Gaussian Mixture Model 

 

Figures 13 (a) and (b) show the results of successful detection under a positioning error of 0 mm; the area in the 

red frame indicates embolism, and Figures 13 (c) and (d) show the results of failed detection. In this study, failure 

occurred owing to closeness of the pixel brightness and plug, which caused misjudgment. 

 

Figure 13. Detection Results 

 

Figure 14 shows the performance of the probability-based two-stage CNN for localization errors of 0, 2, and 5 

mm. Radiologists require a system that can maintain a relatively low number of false positives (i.e., 1–5 per CTPA 

image) while maintaining high sensitivity. The graph depicts the sensitivity when two false positives are observed 

per scan. The probability-based two-stage CNN achieved 85.97%, 87.31%, and 88.71% sensitivity in the best case 

of scanning two false positives under the 0, 2, and 5 mm positioning errors of the second stage, respectively. 

 

Figure 14. Stage-Two Performance with 0, 2, and 5 mm Positioning Errors  
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Table 4 lists the results of this study and those of other research teams that participated in the CAD-PE Challenge 

competition. This competition is organized by the creators of the PE Challenge database, and all participating 

research teams must continue to use the same materials and performance evaluation criteria to ensure fairness. 

The purpose is to compare the teams that can develop the best algorithm to detect PE. This study also evaluated a 

probability-based two-stage CNN using the same performance evaluation criteria. 

 

The results in Table 4 are based on the case of a 0 mm localization error; that is, the detected PE is considered a 

true positive only when the detection result falls entirely within the ground truth mask. This study argues that 

optimizing performance under a positioning error of 0 mm can be more helpful for clinical applications and is 

more challenging than having a higher performance advantage under 2 and 5 mm positioning errors. As can be 

observed from Table 4, although the related research work started after the competition, the results ranked first 

compared with other teams that have previously participated in the CAD-PE Challenge. The proposed method 

achieved a sensitivity of 85.97%, with two false positives per scan. The teams marked in blue, including the one 

that performed this study, used deep learning methods, and those marked in green used traditional machine 

learning methods, such as support vector machines that support vector learning or Adaboost. Overall, deep 

learning methods outperformed traditional machine learning methods in PE detection, and are more suitable for 

developing CAD systems for PE detection. 

 

Table 4. Results of This Study and Other Teams that have Previously Participated in the CAD-PE Challenge 

Teams Number of training sets 
Sensitivity 

1FP 2FP 

UA-2D 20 37% 43% 

UA-2.5D 71 50% 58% 

ASU-Mayo 20 28% 33% 

Lin et.al 20 N/A 75% 

This Study 20 N/A 85% 

Mevis Inc. 20 N/A 28% 

UPM 20 15% 22% 

FUM-Mvlab 20 7% 22% 

BWH 20 1% 2% 

LMNIT 20 0.3% 0.7% 

 

Table 5 lists the experimental results based on different factors. It can be observed that when tested on the test set, 

the original two-stage CNN has a sensitivity of 75.40% in the best case, wherein the localization error is 0 mm 

and two false positives are scanned. Compared with the original two-stage CNN, the EFM improves the sensitivity 

by 7.92%, but also increases the training time by 1.59 h. In contrast, PAE improves the sensitivity by 5.69% while 

reducing training time by approximately 56 min. Using EFM and PAE simultaneously can significantly improve 

the sensitivity by 10.57%, whereas increasing the training time by only 29 min. Therefore, combining EFM and 

PAE with a two-stage CNN can improve the PE detection performance with acceptable extra time consumption. 
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Table 5. Experimental Results Based on Different Factors 

Network 

architecture 

Factor 0 mm 2 mm 5 mm Training time (h) 

ResNet-18  75.40% 75.40% 75.40% 4.45 

ResNet-18 EFM 83.32% 86.37% 87.22% 6.04 

ResNet-18 PAE 81.09% 84.12% 84.63% 3.51 

ResNet-18 EFM+PAE 85.97% 87.31% 88.71% 4.94 

 

Conclusion  

 

In this study, a deep learning approach was used to extract candidate regions from raw CTPA images by using a 

3D FCN. Through the PCA process of aligning the blood vessels and calculating the regularity of PE lesion 

distributions in the image, the false-positive categories in the candidate area could be conveniently eliminated. 

During the experiment, the limitations of the 3D FCN in detecting small objects, such as PE, in medical images 

were discovered. Because the extraction stride of the anchor points was too large, most of the anchor points 

extracted by the 3D FCN could not match the ground truth, resulting in poor detection performance. Increasing 

the density of samples by enlarging the feature map resulted in additional memory and time consumption. Most 

PEs only appear in some specific areas of the image, rather than evenly distributed over the entire image. 

Therefore, by calculating the frequency of all PEs in the training set at different positions in the image, a Gaussian 

mixture model could be used to establish the probability distribution of PE at different positions in the image. The 

extraction of candidate regions facilitated the extraction of positive anchors from the probability distribution 

through sampling. By combining the EFMs and candidate targets, a series of anchor points that were easier to 

match with the ground truth could be extracted with higher accuracy, while avoiding additional time and space 

consumption. It was concluded that combining EFMs and PAE with a two-stage CNN can improve the PE 

detection performance with acceptable extra time consumption. 

 

This study mainly contributes to the field in two aspects: (1) it proposes a modified probabilistic-based two-stage 

CNN framework. By combining image processing for vessel alignment, proper feature map up-sampling, and a 

probability-based anchor extraction strategy, the PE detection performance can be significantly improved. (2) 

After modification, the probability-based two-stage CNN improved the PE detection sensitivity from 75.4% to 

85.97%. 

 

A limitation of the PE Challenge database is that all selected cases are PE-positive; therefore, the predictive value 

of this study architecture for PE-negative cases could not be assessed. Although other public datasets of CT images 

exist, especially those related to lung cancer screening, to the best of our knowledge, there is no public dataset of 

pulmonary computed tomography angiography images with negative cases. The second limitation is the amount 

of training data; therefore, the network architecture used in this study includes data augmentation in the second 

stage. It is believed that adding new cases to the PE Challenge public database can further help in developing new 

algorithms and improving the detection performance. 
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During the experiment, it was also discovered that there is still room for growth in the study of pulmonary artery 

computed tomography angiography. Misjudgment as a candidate target to reduce the number of false positives 

that must be eliminated in the second stage is an issue that can be further studied. Additionally, this study also 

discovered that some other medical image recognition problems can use a similar framework, such as calcified 

plaque detection in cervical angiography and tumor detection in other CT images; in these cases, the distribution 

of lesions may appear in other forms, rather than the probability distribution calculated in this study. For example, 

the probability of plaque distribution in the carotid or coronary arteries can also be calculated using a Gaussian 

distribution. Based on these extensions, it is expected that the probability distribution of other lesions in medical 

images can be established in the future, and a corresponding CAD system can be developed to ensure radiologists 

concentrate more on the locations in the images that have a high probability of lesions. 
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