Detection of Cardiovascular Abnormalities Using Artificial Intelligence and Heart Sounds
DOI:
https://doi.org/10.46328/ijonest.118Keywords:
engineering, life preservation, smart systemsAbstract
Auscultation of the heart is one of the most crucial techniques physicians use to learn about a patient’s heart. Therefore, a lot of effort has been devoted to developing more sophisticated stethoscopes to assist physicians for better diagnosis. Most of this work has been to design stethoscopes to provide clearer signals. This work is an initial effort to include an Artificial Intelligence (AI) system in the stethoscope to perform a preliminary diagnosis of multiple heart conditions. To train the neural network, heart sounds representing 42 different issues are used. Due to the limited number of training data, noise is added to the available heart sounds. This serves the dual purpose of increasing the training data and to partially account for the variation in the heart sounds collected from different patients. These heart sounds are used to extract features such as mean, median, standard deviation, signal entropy, kurtosis, skewness, etc. for neural network training. An optimal neural network architecture is developed to classify these 42 heart conditions with 98% accuracy.Downloads
Published
Issue
Section
License
Articles may be used for research, teaching, and private study purposes. Authors alone are responsible for the contents of their articles. The journal owns the copyright of the articles. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of the research material.
The author(s) of a manuscript agree that if the manuscript is accepted for publication in the International Journal on Engineering, Science and Technology (IJonEST), the published article will be copyrighted using a Creative Commons “Attribution 4.0 International” license. This license allows others to freely copy, distribute, and display the copyrighted work, and derivative works based upon it, under certain specified conditions.
Authors are responsible for obtaining written permission to include any images or artwork for which they do not hold copyright in their articles, or to adapt any such images or artwork for inclusion in their articles. The copyright holder must be made explicitly aware that the image(s) or artwork will be made freely available online as part of the article under a Creative Commons “Attribution 4.0 International” license.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.