EEG Neuro-markers to Enhance BCI-based Stroke Patients Rehabilitation
DOI:
https://doi.org/10.46328/ijonest.139Keywords:
BCI, Electroencephalography, Relative power, Motor imagery, ClassificationAbstract
Stroke is the second largest cause of death worldwide and one of the most common causes of disability. However, several approaches have been proposed to deal with stroke patient rehabilitation like robotic devices and virtual reality systems, researchers have found that the brain-computer interfaces (BCI) approaches can provide better results. In this study, the electroencephalography (EEG) dataset from post-stroke patients were investigated to identify the effects of the motor imagery (MI)-based BCI therapy by investigating sensorimotor areas using frequency and time-domain features and to select particular methods that help in enhancing the MI-based BCI systems for stroke patients using EEG signal processing. Therefore, to detect the imagined movements that are typically required within conventional rehabilitation therapy with good identification accuracies, the conventional filters and wavelet transform (WT) denoising technique was used in the first stage. Next, attributes from frequency and entropy domains were computed. Finally, support vector machine (SVM) classification techniques were utilized to test the motor imagery (MI)-based BCI rehabilitation. The results demonstrate the capability of the WT denoising technique together with the used features and SVM classifier to discriminate the tested classes of the left hand, right hand and foot MI-based BCI rehabilitation. This study will help medical doctors, clinicians, physicians and technicians to introduce a good rehabilitation program for post-stroke patients.Downloads
Published
Issue
Section
License
Articles may be used for research, teaching, and private study purposes. Authors alone are responsible for the contents of their articles. The journal owns the copyright of the articles. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of the research material.
The author(s) of a manuscript agree that if the manuscript is accepted for publication in the International Journal on Engineering, Science and Technology (IJonEST), the published article will be copyrighted using a Creative Commons “Attribution 4.0 International” license. This license allows others to freely copy, distribute, and display the copyrighted work, and derivative works based upon it, under certain specified conditions.
Authors are responsible for obtaining written permission to include any images or artwork for which they do not hold copyright in their articles, or to adapt any such images or artwork for inclusion in their articles. The copyright holder must be made explicitly aware that the image(s) or artwork will be made freely available online as part of the article under a Creative Commons “Attribution 4.0 International” license.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.