Self-learning by Using Code-Based Games: An Easy Way to Learn Biomolecule’s Nomenclature

Josep Joan Centelles, Estefania Moreno, Pedro R. de Atauri
448 124

Abstract


The Montessori method was an educational model devised at the beginning of the 20th century by the Italian pedagogue, physician, psychologist, and psychiatrist María Montessori (1870-1952). She observed that her students activated their intelligence and developed their personality by carrying out manual activities. In recent years, one of the activities that she used, gamification, is currently booming in teaching. Games based in words or letters are often used in language learning, either in presential lessons or in mobile applications. In our teaching innovation group (GINDOC-UB/180), we proposed to adapt those word games using codes so that students could achieve a self-learning on the nomenclature of biomolecules, thus improving their knowledge in metabolism. These code-based games were proposed to Biochemistry students at the Chemistry degree of the Universitat de Barcelona. Games were posted on the Virtual Campus using Moodle. A code is part of a communicative system, and it is defined as a set of elements that allows a message to be decoded. In biochemistry, the best-known code is the genetic code that translates 3 nucleotides to an amino acid. The code allows the students to see that it is a degenerated code, and it was the first code-based game used. Nevertheless, only 20 amino acids are involved, and some letters are missing. Thus, we also used other codes such as numeric codes, Morse code, Braille system code, or codes from other alphabets (Japanese katakana or hiragana, Cyrillic alphabet, Arabic alphabet, or runic alphabet). In this work some examples of the games that can be proposed to the students are shown. Proposed games were highly valued by students and allowed a self-learning on the proposed biomolecules. Games based on the genetic code were easier and more enjoyable for the students to solve, and they provided them with additional biochemical knowledge of protein translation.


Keywords


Education, Games, Decodification, Biochemistry

Full Text:

PDF


DOI: https://doi.org/10.46328/ijonest.176

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 International Journal on Engineering, Science and Technology

Abstracting/Indexing


 

 


International Journal on Engineering, Science and Technology (IJonEST)-ISSN: 2642-4088

 


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 
.