Geometry for a Symmetrıc 2-Path Atom Interferometer Model
DOI:
https://doi.org/10.46328/ijonest.20Keywords:
Geometry, Interferometer, Phase shift, Two-level atom, SymmetryAbstract
It is often argued that the sensitivity of atom interferometer depends on the geometry of the interfering atom paths, conventionally, atom interferometer are usually configured to be sensitive to all deformations including tensor and scalar field deformations, it is a promising and robust tool for obtaining a highly sensitive and accurate measurements of gravitational signals, as such they are potentially capable of testing a wide range of fundamental physics questions including gravitational decoherence. Therefore, motivated by the recent search to improve the sensitivity of the next generation atom interferometer, we derived a broad class of equations that obeys a specific geometric configuration for the interfering paths for a 2-level atom interferometer model, and in doing so, we further analysed various configurations for the geometric interpretation, in addition to interferometric influence phase shift and a possible decoherence factor which could lead to a systematic theoretical framework for future sensing of weak forces, due to, for example, gravitational waves and light dark matter.References
Adamu, Y. & Wang , C. H. T. (2021). Geometry for a Symmetrıc 2-Path Atom Interferometer Model. International Journal on Engineering, Science and Technology (IJonEST), 3(1), 1-6.
Downloads
Published
Issue
Section
License
Articles may be used for research, teaching, and private study purposes. Authors alone are responsible for the contents of their articles. The journal owns the copyright of the articles. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of the research material.
The author(s) of a manuscript agree that if the manuscript is accepted for publication in the International Journal on Engineering, Science and Technology (IJonEST), the published article will be copyrighted using a Creative Commons “Attribution 4.0 International” license. This license allows others to freely copy, distribute, and display the copyrighted work, and derivative works based upon it, under certain specified conditions.
Authors are responsible for obtaining written permission to include any images or artwork for which they do not hold copyright in their articles, or to adapt any such images or artwork for inclusion in their articles. The copyright holder must be made explicitly aware that the image(s) or artwork will be made freely available online as part of the article under a Creative Commons “Attribution 4.0 International” license.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.