Advancing Image Database Technologies in Clinical Decision Support Systems: A Systematic Literature Review

Ruizhi Yu, Yubo Fu
111 39

Abstract


Image data has played a crucial role in the Clinical Decision Support System (CDSS). While numerous studies have focused on developing techniques to extract valuable information from image data to aid in disease diagnosis, there is a lack of attention on the storage and retrieval technologies for image database. Extracting information from image data for decision making models requires a substantial volume of image data. However, images often come with large file sizes due to their high resolution and complex details, and compressing such data may lead to the loss of critical diagnostic information. Thus, the challenge lies in preserving the relevant information within images while managing data volume. This literature review aims to explore existing research on image-specific database systems, and their techniques for image data storage and information retrieval to enhance the application of images within CDSS. The review also brings attention to the need for specialized database systems that are tailored to handle the unique characteristics of clinical image data. Consequently, this review serves as a foundation for future research endeavors aimed at advancing image data management and utilization in the realm of medical diagnosis and beyond.

Keywords


Image Database Technology, Clinical Decision Support System, Information Retrieval from Image, Image Database Management, Database System for Medical Imaging

Full Text:

PDF

References


Amouh, T., Gemo, M., Macq, B., Vanderdonckt, J., ElGariani, A. W., Reynaert, M. S., Stamatakis, L., Thys, F. (2005). Versatile Clinical Information System Design for emergency departments. IEEE Transactions on Information Technology in Biomedicine, 9(2), 174–183. https://doi.org/10.1109/titb.2005.847159

Bass, L., Klein, M., Bachmann, F. (2002). Quality attribute design primitives and the attribute driven design method. Software Product-Family Engineering, 169–186. https://doi.org/10.1007/3-540-47833-7_17

Berner, E. S. (2007). Clinical decision support systems (Vol. 233). Springer Science+ Business Media, LLC.

Bhaya, C., Obaidat, M. S., Pal, A. K., Islam, S. H. (2021). Encrypted medical image storage in DNA domain. ICC 2021 - IEEE International Conference on Communications. https://doi.org/10.1109/icc42927.2021.9500718

Cai, W., Feng, D., Fulton, R. (2000). Content-based retrieval of dynamic PET functional images. IEEE Transactions on Information Technology in Biomedicine, 4(2), 152–158. https://doi.org/10.1109/4233.845208

Cao, P., Hashiba, M., Akazawa, K., Yamakawa, T., Matsuto, T. (2003). An integrated medical image database and retrieval system using a web application server. International Journal of Medical Informatics, 71(1), 51–55. https://doi.org/10.1016/s1386-5056(03)00088-1

Chang, N. S., Fu, K. S. (1979). Query-by-pictorial-example. COMPSAC 79. Proceedings. Computer Software and The IEEE Computer Society’s Third International Applications Conference, 1979. https://doi.org/10.1109/cmpsac.1979.762512

Chang, S. K., Yan, C. W., Dimitroff, D. C., Arndt, T. (1988). An intelligent image database system. IEEE Transactions on Software Engineering, 14(5), 681–688. https://doi.org/10.1109/32.6147

Cheng, D., Ramos-Cejudo, J., Tuck, D., Elbers, D., Brophy, M., Do, N., Fillmore, N. (2019). External validation of a prognostic model for mortality among patients with non–small-cell lung cancer using the Veterans Precision Oncology Data Commons. Seminars in Oncology, 46(4–5), 327–333. https://doi.org/10.1053/j.seminoncol.2019.09.006

Chock, M., Cardenas, A. F., Klinger, A. (1984). Database structure and manipulation capabilities of a Picture Database Management System (PICDMS). IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(4), 484–492. https://doi.org/10.1109/tpami.1984.4767553

DeLone, H. H., McLean, R. E. (2003). The Delone and McLean Model of Information Systems Success: A ten-year update. Journal of Management Information Systems, 19(4), 9–30. https://doi.org/10.1080/07421222.2003.11045748

Elbers, D. C., Fillmore, N. R., Sung, F.-C., Ganas, S. S., Prokhorenkov, A., Meyer, C., Hall, R. B., Ajjarapu, S. J.,

Chen, D. C., Meng, F., Grossman, R. L., Brophy, M. T., Do, N. V. (2020). The Veterans Affairs Precision Oncology Data Repository, a clinical, genomic, and Imaging Research Database. Patterns, 1(6), 100083. https://doi.org/10.1016/j.patter.2020.100083

Elmasri, R., Navathe, S. (2020). Fundamentals of Database Systems. Pearson.

Georgiou, A., Prgomet, M., Markewycz, A., Adams, E., Westbrook, J. I. (2011). The impact of Computerized Provider Order Entry Systems on medical-imaging services: A systematic review. Journal of the American Medical Informatics Association, 18(3), 335–340. https://doi.org/10.1136/amiajnl-2010-000043

Gordillo, N., Montseny, E., Sobrevilla, P. (2013). State of the art survey on MRI Brain Tumor Segmentation. Magnetic Resonance Imaging, 31(8), 1426–1438. https://doi.org/10.1016/j.mri.2013.05.002

Handler, J. A. (2004). Emergency medicine information technology consensus conference: Executive summary. Academic Emergency Medicine, 11(11), 1112–1113. https://doi.org/10.1197/j.aem.2004.08.005

HealthIT. (2018, April 10). Clinical decision support. HealthIT.gov. https://www.healthit.gov/topic/safety/clinical-decision-support

Hevner, A., Chatterjee, S. (2010). Design research in information systems. Integrated Series in Information Systems. https://doi.org/10.1007/978-1-4419-5653-8

Hill, D. L., Batchelor, P. G., Holden, M., Hawkes, D. J. (2001). Medical image registration. Physics in Medicine and Biology, 46(3). https://doi.org/10.1088/0031-9155/46/3/201

Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele University, 33(2004), 1–26.

Knickman, J., Kovner, A. R., Jonas, S. (2015). Jonas and Kovner’s health care delivery in the United States. Springer Publishing Company, LLC.

Lopez, M. H., Weingarten, S., Teich, J. M., Middleton, B., Mackay, E., Lomotan, E. A., Kawamoto, K., Josephs, M.,

Gandhi, T. K., Bonner, H. I., Bates, D. W., Bakken, S., Tcheng, J. E. (2023). Optimizing Strategies for Clinical Decision Support Summary of a meeting series. National Academies Press.

Marcos, E., Acuña, C. J., Vela, B., Cavero, J. M., Hernández, J. A. (2007). A database for medical image management. Computer Methods and Programs in Biomedicine, 86(3), 255–269. https://doi.org/10.1016/j.cmpb.2007.03.006

OCR, O. for C. R. (2023, February 22). Methods for de-identification of phi. HHS.gov. https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The Prisma 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906. https://doi.org/10.1016/j.ijsu.2021.105906

Santos, M., Silva, A., Rocha, N. P. (2020). DICOM metadata quality analysis for mammography radiation exposure characterization. Trends and Innovations in Information Systems and Technologies, 155–164. https://doi.org/10.1007/978-3-030-45688-7_16

Siadat, M.-R., Soltanian-Zadeh, H., Fotouhi, F., Elisevich, K. (2005). Content-based image database system for epilepsy. Computer Methods and Programs in Biomedicine, 79(3), 209–226. https://doi.org/10.1016/j.cmpb.2005.03.012

Sim, I., Gorman, P., Greenes, R. A., Haynes, R. B., Kaplan, B., Lehmann, H., Tang, P. C. (2001). Clinical Decision Support Systems for the practice of evidence-based medicine. Journal of the American Medical Informatics Association, 8(6), 527–534. https://doi.org/10.1136/jamia.2001.0080527

Suapang, P., Yimmun, S., Puditkanawat, A. (2011). Web-based medical image archiving and communication system for teleimaging. 2011 11th International Conference on Control, Automation and Systems, 172–177.

Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N., Kroeker, K. I. (2020). An overview of clinical decision support systems: Benefits, risks, and strategies for Success. Npj Digital Medicine, 3(1). https://doi.org/10.1038/s41746-020-0221-y

Thomas, J. D. (1995). The DICOM image formatting standard: What it means for echocardiographers. Journal of the American Society of Echocardiography, 8(3), 319–327. https://doi.org/10.1016/s0894-7317(05)80042-2

Zhang, J., Xiao, W., Zhang, S., Huang, S. (2017). Device-free localization via an extreme learning machine with parameterized geometrical feature extraction. Sensors, 17(4), 879. https://doi.org/10.3390/s17040879

Zhuang, Y., Jiang, N. (2023). Progressive detail-content-based similarity retrieval over large lung CT image database based on WSLN model. Expert Systems with Applications, 228, 120209. https://doi.org/10.1016/j.eswa.2023.120209

Zloof, M. M. (1977). Query-by-example: A data base language. IBM Systems Journal, 16(4), 324–343. https://doi.org/10.1147/sj.164.0324




DOI: https://doi.org/10.46328/ijonest.202

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 International Journal on Engineering, Science and Technology

Abstracting/Indexing


 

 


International Journal on Engineering, Science and Technology (IJonEST)-ISSN: 2642-4088

 


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 
.