Multidisciplinary Optimal Design of an Active Control System and State Estimator for an Aircraft Wing
DOI:
https://doi.org/10.46328/ijonest.61Keywords:
multidisciplinary and multi-objective optimization, control systems, observer design, flexible aircraft wingsAbstract
A multidisciplinary and multi-objective optimization approach that integrates the design of the control surfaces’ sizes, active control system, and estimator for an aircraft’s wing with three control surfaces is developed in this paper. Four objectives are considered: minimizing impacts of external gust loads, maximizing stability robustness, reducing control energy consumption, and minimizing the Frobenius norm of the estimator gains. For simulation purposes, a mathematical model of a flexible wing having three ailerons is used. The control system and observer are designed simultaneously. The optimization problem is formulated and solved by NSGA-II (non-dominated sorting genetic algorithm II). The solution of the optimization problem is called the Pareto set and the corresponding set of function evaluations is called Pareto front. The properties of the Pareto set and Pareto front; sensitives of the dominant poles of the open-loop system, closed-loop system, and estimator to the airspeed; and responses of the controlled, uncontrolled, and observer models at selected objective values are obtained. The results shows that the simultaneous design of the control and estimator algorithms, and the geometry of the ailerons in the multi-objective settings is very effective, the closed-loop control system can suppress the flutter and stabilize the system, and the estimator converges very quickly and always stable regardless of the air stream velocity.References
Greer, C. S. & Sardahi, Y. (2021). Multidisciplinary Optimal Design of an Active Control System and State Estimator for an Aircraft Wing. International Journal on Engineering, Science and Technology (IJonEST), 3(2), 133-145.
Downloads
Published
Issue
Section
License
Articles may be used for research, teaching, and private study purposes. Authors alone are responsible for the contents of their articles. The journal owns the copyright of the articles. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of the research material.
The author(s) of a manuscript agree that if the manuscript is accepted for publication in the International Journal on Engineering, Science and Technology (IJonEST), the published article will be copyrighted using a Creative Commons “Attribution 4.0 International” license. This license allows others to freely copy, distribute, and display the copyrighted work, and derivative works based upon it, under certain specified conditions.
Authors are responsible for obtaining written permission to include any images or artwork for which they do not hold copyright in their articles, or to adapt any such images or artwork for inclusion in their articles. The copyright holder must be made explicitly aware that the image(s) or artwork will be made freely available online as part of the article under a Creative Commons “Attribution 4.0 International” license.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.